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Abstract

This paper develops robust inference for conditional quantile regression (QR) under unknown forms

of weak dependence in time series data. We first establish fixed-smoothing asymptotic theory for QR

by showing that the long-run variance (LRV) estimator for the non-smooth QR score process weakly

converges to a random matrix scaled by the true LRV. Additionally, QR-Wald statistics based on the

kernel LRV estimator converge to non-standard limits, while using orthonormal series LRV estimators

yields standard F and t limits. For the practical implementation of our new asymptotic theory for

Wald and t inference in QR, we extend heteroskedasticity and autocorrelation robust (HAR) inference

for conditional mean regression to QR and apply the optimal smoothing parameter selection rule based

on the Neyman-Pearson principle. Monte Carlo simulation results show that our QR-HAR procedure

reduces size distortions of the HAR inference based on the conditional mean regression and the QR-

HAC inference– particularly in scenarios with moderate sample sizes, strong temporal dependence, and

multiple parameters in the joint null hypothesis.
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1 Introduction

Quantile regression (QR) extends traditional conditional mean regression by estimating relationships be-

tween variables at different quantiles of the dependent variable’s conditional distribution (Koenker, 2005).

By employing the asymmetric loss function proposed by Koenker and Basset (1978), QR offers greater

flexibility than conditional mean regression and is more robust to outliers when modeling varying effects

across the distribution of the dependent variable. Its application has expanded in the analysis of serially

correlated outcome variables in time series economic data, as illustrated by examples in Xiao (2012) and

Galvao and Yoon (2024). The goal of this paper is to provide robust inference for the conditional QR,

addressing unknown forms of weak dependence in time series data.

When regression errors are serially correlated and heteroskedastic in time series data, the conventional

robust standard error formulas for independent data become invalid. This issue is well recognized in the

conditional mean regression models and was addressed by the pioneering work of White and Domowitz

(1984), followed by Newey and West (1987) and Andrews (1991). Key innovations of these initial work

include positive-definite, non-parametric estimation of the long-run variance (LRV) matrix of the regres-

sion score vector and the establishment of its heteroskedasticity and autocorrelation consistency (HAC)

property. Technically, the HAC property relies on the assumption that the amount of smoothing in the

nonparametric LRV estimate increases in the limiting experiment of the asymptotic approximation. The

literature also offers guidance on selecting the optimal smoothing parameter for computing robust standard

errors, as discussed in Andrews (1991) and Newey and West (1994).

More recently, there has been a breakthrough in the time series literature, which introduced an alterna-

tive asymptotic approximation for time series robust standard errors (Lazarus et al, 2018). This new type

of asymptotic theory and the corresponding inferential methods, known as HAR inference, are based on

fixed-smoothing asymptotics, which were initially developed by Kiefer and Vogelsang (2002, 2005), Müller

(2007), and Sun et al. (2008) in time series econometrics. In contrast to the conventional increasing-

smoothing asymptotics in the HAC approach, the alternative asymptotic theory assumes that the amount

of smoothing in the non-parametric LRV estimator is fixed as the sample size grows. As a result, the LRV

estimate weakly converges to a random matrix scaled by the true LRV, which contrasts with the HAC

approach. The corresponding HAR-based inference show numerical improvements over HAC-type infer-

ence methods because the fixed-smoothing asymptotics can automatically provide second-order corrected

inference under conventional increasing-smoothing asymptotics, see Sun et al. (2008), Sun (2014a), and

Lazarus et al. (2021), for more details. The HAR approach is also directly connected to the low-frequency

econometrics proposed by Müller and Watson (2020), which captures the long-run variability of economic

data by utilizing low-frequency trigonometric weighted averages with frequency cutoffs corresponding to
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business cycles.

In this paper, we develop QR-HAR inference using more accurate fixed-smoothing asymptotics. Our

alternative asymptotic theory applies to a broad class of HAR-LRV estimators, including existing kernel

LRV estimators (Galvao and Yoon, 2023), exponentiated kernel estimators (Phillips et al., 2006), and

orthonormal series (OS) LRV estimators (Phillips, 2005; Sun, 2013). The main theoretical challenge lies

in establishing fixed-smoothing asymptotic theory for the LRV estimator of the non-differentiable and

dependent QR score process, assuming that the amount of smoothing is fixed as the sample size grows to

infinity. Andrews (1991) and Galvao and Yoon (2024) find that estimation errors in kernel LRV estimates

for non-differentiable processes can be ignored in the contexts of the conditional mean regression and QR,

respectively. However, their results crucially depend on increasing the amount of smoothing as the number

of time periods grows, at a slower rate than the sample size. This assumption does not apply under the

fixed-smoothing asymptotic framework considered in this paper.

To address these technical challenges arising from the non-smooth QR model, we formulate the HAR

LRV estimator using the demeaned QR process, which effectively recenters the weight function in the LRV

estimation. The recentering scheme allows for a spectral representation of the LRV estimator, enabling

us to transform the sum of autocovariances in the LRV estimator into a scaled sum of weighted empirical

processes, with weights determined by the zero-mean eigenfunctions. Additionally, we extend the standard

empirical process theory for i.i.d. data, e.g., Van der Vaart and Wellner (1996), to the time series case

involving non-i.i.d. data with unknown forms of dependence. With these results, our fixed-smoothing

asymptotic theory accounts for the estimation uncertainty inherent in the non-differentiable QR score

process. We also prove that the LRV estimate in QR weakly converges to a random matrix scaled by the

true LRV, which aligns with existing results in the HAR literature for the conditional mean regression

setting.

Building on the alternative asymptotic results for the HAR LRV estimator in QR, we show that the

corresponding QR-Wald statistics weakly converge to non-standard limits. These non-standard limits

are free of nuisance parameters, and their asymptotic critical values can be conveniently simulated by

generating functions of standard Gaussian random vectors that depend on the level of smoothing. We

further show that with the orthonormal series LRV (OS-LRV), the Wald and t-statistics admit standard F

and t critical values, eliminating the need to simulate non-standard critical values in practice. Thus, our

fixed-smoothing asymptotic results are comparable to the HAR inference framework used in conditional

mean regression models, such as Sun (2014a, 2014b) and Lazarus et al. (2021). Given its convenience and

improved finite-sample performance, we recommend using OS-LRV in HAR inference for the QR setting.

We also show that our HAR QR inference can be extended to the non-smooth generalized method of
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moments (GMM) framework.

For the practical implementation of QR-HAR inference, selecting the smoothing parameter is required.

In the case of the OS-LRV estimator, the smoothing parameter corresponds to the number of basis func-

tions. Existing approach, such as Phillips (2005), recommends selecting the smoothing parameter to

minimize the estimator’s asymptotic mean squared error (AMSE). While this method is optimal for the

point estimation of the LRV, it is not directly suited for hypothesis testing, which are the primary goals

in time series robust QR inference. Our QR-HAR approach addresses this issue by developing an optimal

smoothing selection rule that prioritizes hypothesis testing based on the classical Neyman-Pearson prin-

ciple. Using second order approximations of Type I and Type II errors, we derive a closed-form formula

for the testing-optimal smoothing parameter. This notion of the testing-optimal smoothing parameter in

HAR inference was first introduced by Sun et al. (2008) and Sun (2011, 2013) in the conditional mean

regression. See also Lazarus et al. (2018) and Lazarus et al. (2021) for other versions of the testing-optimal

criterion within a non-NP framework.

Our Monte Carlo simulation results indicate that the QR-Wald inference approach in the median

regression significantly reduces the empirical size distortions found in HAR inference based on the con-

ditional mean regression. Its finite-sample performance remains robust to the time series persistence of

the regression error, even when the error distribution is asymmetric or exhibits heavier tails than the

Gaussian distribution. This finding confirms the advantage of time series robust QR inference, as pointed

out in Xu (2021), which addresses both serial correlation and the effects of heavy-tailed errors with un-

bounded second moment that negatively impact the performance of the HAR conditional mean regression.

Furthermore, our numerical results indicate that the QR-HAR approach reduces the size distortions of

existing QR-HAC approach across various data-generating processes. The finite-sample improvements of

our QR-HAR approach arise from the use of more accurate asymptotic F and t critical values, driven by

alternative fixed-smoothing asymptotics and a testing-oriented smoothing parameter. We also find that

the advantages of the QR-HAR approach over QR-HAC are particularly pronounced when the sample size

is moderate, temporal dependence increases, and multiple parameters are included in the null hypothesis.

This paper contributes to the literature on robust inference in time series by addressing the challenges

posed by serially correlated and heteroskedastic regression errors. Earlier works include Newey-West (1987),

Andrews (1991), Kiefer and Vogelsang (2005), Sun et al. (2008), Sun (2014 a&b), and Lazarus et al. (2021).

These studies predominantly focus on the conditional mean regressions or differentiable time series processes

involving unknown parameters, with relatively little attention given to addressing serial correlation and

heteroskedasticity in the non-smooth QR model. Chen et al. (2014) develop a time series robust sieve

inference method for semi-nonparametric time series models. A recent work by Galvao and Yoon (2024)
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extends Andrews’ (1991) HAC-approach to QR models in time series data. The key contribution of

their theory is the formal development of increasing-smoothing asymptotic theory for long-run variance

estimates of the QR score function. Specifically, they prove the consistency of their HAC estimator in QR

and provide a rule for optimal smoothing parameter (bandwidth) selection, extending Andrews (1991)’s

conditional mean regression framework. While their HAC standard errors can significantly reduce the size

distortion problem associated with heteroskedasticity-consistent (HC) procedures in QR, the QR-HAC

approach fails to deliver accurate empirical sizes, particularly when the degree of temporal dependence

increases.

Our work fills a gap in the QR time series literature by developing a more accurate alternative asymp-

totic theory that fully integrates testing-oriented HAR inference in a non-differentiable QR setting. The

HAR inference using the fixed-smoothing asymptotics is closely related to the self-normalized (SN) ap-

proach for weakly dependent data, as studied in Shao (2010). Zhou and Shao (2013) and Hoga and Schultz

(2025) establish asymptotic theory for the SN inference for QR. The SN approach also leverages the random

asymptotic limit of the denominators in self-normalized statistics. However, its practical implementation

involves recursive estimations of QR coeffi cients using only subsamples, which can be computationally

demanding and requires selecting a tuning parameter that determines the range of the initial subsample

periods. In contrast, our HAR inference in QR requires only the computation of the time series robust

Wald and t statistics and can utilize standard F and t critical values with a testing-oriented smoothing

parameter selection. The literature also provides time series robust bootstrapping approaches to enhance

the performance of QR, including the moving block bootstrap (MBB) method by Fitzenberger (1998) and

the smoothed and tapered MBB method by Gregory et al. (2018). These methods commonly require addi-

tional tuning parameters and the simulation of bootstrap critical values, which can be also computationally

costly. Our Monte Carlo experiments show that the finite-sample performance of our QR-HAR inference

is comparable to the bootstrap approach in Gregory et al. (2018) when serial correlation is moderate and

can outperform the bootstrap approach when serial correlation is strong.

The remainder of the paper is organized as follows: Section 2 introduces the issue of time series

dependence in QR and proposes the HAR LRV matrix estimator for the QR model. Section 3 establishes

the fixed-smoothing asymptotic theory for the QR-HAR LRV estimator. Building on this result, Section

4 develops nuisance-parameter-free asymptotic inferences for QR. This section also discusses a possible

extension of our HAR QR inference to non-smooth GMM for quantile IV regression models and establishes

a connection between our fixed-smoothing asymptotic inference and the self-normalization approach for

QR. Section 5 provides practical recommendations for QR-HAR inferences, focusing on the optimal choice

of the smoothing parameter. Section 6 presents the results of Monte Carlo simulations, and Section 7
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concludes the paper. Tables and proofs are included in the Appendix of Section 8.

2 Quantile Regression for Weakly Dependent Data

2.1 The issue of time series dependence in QR

We consider the linear τ -th conditional QR equation:

yt = X ′tβ0(τ) + et(τ) for t ∈ {1, . . . , T},

and τ ∈ (0, 1), where the population QR coeffi cient β0(τ) ∈ Rd is the unique minimizer of E[ρτ (yt −X ′tb)]

with ρτ (u) = u · (τ − 1(u ≤ 0). The QR estimator β̂(τ) solves the following convex objective function

(Koenker, 2005):

β̂(τ) = arg min
b

T∑
t=1

ρτ (yt −X ′tb),

and β̂(τ) satisfies the following approximate first-order condition:

1

T

T∑
t=1

Zt(β̂(τ)) =
1

T

T∑
t=1

Xt(τ − 1(yt ≤ X ′tβ̂(τ)) = op

(
1√
T

)
. (1)

We assume that the QR score function Zt(b) := Xt(τ − 1(yt ≤ X ′tb)) identifies the population parameter

β0(τ) by having zero unconditional expected value, i.e.,

E[Zt(β0(τ))] = E[Xt(τ − 1(yt ≤ X ′tβ0(τ))] = 0.

Let qy(τ |Xt) represent the τ -quantile of the outcome variable yt conditional on the regressor Xt ∈ Rd,

which satisfies

P (yt ≤ qy(τ |Xt)|Xt)− τ = E [{1 (yt ≤ qy(τ |Xt))− τ} |Xt] = 0 a.s. (2)

When the τ -conditional quantile function is correctly specified in the QR equation, the conditional moment

restriction above holds by construction, with qy(τ |Xt) = X ′tβ0(τ) almost surely. In this case, the QR

coeffi cient β̂(τ) estimates the effect or prediction of Xt on the true τ -conditional quantile of the outcome

variable yt. When qy(τ |Xt) is misspecified, however, the above conditional moment restriction does not

hold. Nevertheless, X ′tβ̂(τ) can still be interpreted as estimation of the best approximation of the true

τ -conditional quantile of yt, minimizing a weighted mean-squared error loss function for misspecification

error (Angrist et al., 2006).

The goal of this paper is to provide robust inference for QR coeffi cient β0(τ), addressing unknown forms

of dependence in time series data {(Yt, X ′t)}Tt=1. Throughout the paper, we assume
√
T -consistency of β̂(τ)
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and that the following Bahadur representation holds:

√
T (β̂(τ)− β0(τ)) = D(τ)−1 1√

T

T∑
t=1

Xt(τ − 1(yt ≤ X ′tβ0(τ)) + op(1) (3)

d→ N(0,Σ(τ)) with Σ(τ) = D(τ)−1Ω(τ)D(τ)−1, (4)

where D(τ) = E[f(0|Xt)XtX
′
t] and f(0|Xt) is the conditional density of et(τ) evaluated at 0. Our asymp-

totic theory in this paper assumes a fixed value of τ ∈ (0, 1), but it can be generalized to hold uniformly

over τ ∈ [ε, 1− ε] by imposing certain regularity conditions on qy(τ |Xt), such as Lipschitz continuity. For

example, Galvao and Yoon (2024) extend the pointwise asymptotic theory for time series QR under the

increasing smoothing asymptotics.

In the presence of an unknown form of weak dependency in the time series data {(Yt, X ′t)}Tt=1, the d×d

matrix Ω(τ) is a long-run variance (LRV) matrix of the quantile score process

Ω(τ) =
∞∑

j=−∞
Γj(τ) with Γj(τ) = Cov(Zt, Zt−j),

where Zt := Zt(β0(τ)) = Xt(τ − 1(yt ≤ X ′tβ0(τ)).

Let Σ̂(τ) := D̂(τ)−1Ω̂(τ)D̂(τ)−1 denote an estimate for Σ(τ):= D(τ)−1Ω(τ)D(τ)−1, which is a crucial

component for robust Wald and t statistics in QR. When formulating Σ̂(τ), non-parametric estimations

for D(τ) and Ω(τ) are required. The term D(τ) captures the impact of heteroskedasticity and has been

extensively studied in the QR literature. Specifically, Kato (2012) proves that Powell’s sandwich estima-

tor, D̂(τ) = (T lT )−1
∑T

t=1K((yt −X ′tβ̂(τ))/lT )(XtX
′
t), where K(u) := 2−11(|u| ≤ 1) denotes the uniform

kernel function, is consistent and asymptotically normal under a broad range of data-generating processes,

including both i.i.d. and time series settings. It is noteworthy that the formulation of D̂(τ) remains un-

changed for dependent time series data. A more detailed implementation of D̂(τ), including the bandwidth

parameter, lT is provided in subsection 8.1 of Appendix.

In contrast to D̂(τ), the formulation of Ω̂(τ) involves a non-trivial difference from the i.i.d. case. This

is because the presence of an unknown form of time series dependence introduces infinite summations of

autocovariance for the non-differentiable QR score process {Zt} = {mt(τ)Xt}, wheremt(τ) := τ−1(et(τ) ≤

0), in Ω(τ). This dependence not only arises from the time series regressor Xt but can also be induced by

the autocorrelation in the QR error et(τ) via its quantile score function mt(τ). The serial correlation in

mt(τ) captures the temporal dependence of tail events at the τ -quantile. It can arise even if the true QR

is correctly specified, as in (2). For example, suppose the true data-generating process (DGP) of yt follows

a simple AR(1) process:

yt = µy + ρyt−1 + εt, (5)
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where |ρ| < 1, εt is independent of yt−1. In this case, the true conditional quantile function is correctly

specified with qy(τ |Xt) = X ′tβ0(τ), where Xt = (1, yt−1), β0(τ) = (F−1
ε (τ) + µy, ρ)′, and F−1

ε (·) denotes

the inverse of the cumulative distribution function (CDF) of εt. Also, it is not diffi cult to check that the

τ -quantile error et(τ) = εt − F−1
ε (τ) satisfies

E[mt(τ)|Xt] = E[τ − 1(et(τ) ≤ 0)|Xt] = 0 a.s. (6)

The process mt(τ) can exhibit serial correlation if the error process εt is serially correlated. For instance,

Galvao and Yoon (2024) numerically illustrate that the quantile autocorrelation of mt(τ) strictly increases

with respect to ρ in the Gaussian process case of {εt} (or {et(τ)}). The serial correlations embodied in

mt(τ) and Xt imply that

Γj(τ) = Cov(Zt, Zt−j) = E[XtXt−j ]E[mt(τ)mt−j(τ)] 6= 0 for j 6= 0.

Consequently, conventional heteroskedasticity-robust standard error estimators in QR, which assume in-

dependent error terms– such as those proposed by Angrist et al. (2006, p. 551)– do not apply to time

series data, as they rely on the assumption Ω(τ) = Γ0(τ), which does not hold in the presence of serial

correlation. Beyond the simple AR(1) example, the issues of the serial correlation in mt(τ) can be arisen

in many other empirical settings, including h-period-ahead quantile prediction, as in Adrian et al. (2019).

In this case, yt = Yt+h for h > 0, which naturally induces serial correlation in the QR regression error

et+h(τ).

We also point out that even if the error process in the conditional mean regression is serially uncorre-

lated, it does not necessarily follow that Γj(τ) = 0 for j 6= 0. For example, consider the following non-AR(1)

DGP for yt :

yt = β0,0 + β0,1xt + εt,

where {xt} is a strictly stationary and serially correlated time series that is independent of {εt}. Let Ft−1

denote the σ-algebra generated by the process {xt−1, εt−1, xt−2, εt−2, . . .}, and suppose εt = σtut, where

{ut} is an i.i.d innovation series and σt is Ft−1-measurable positive random variable following an ARCH

or GARCH-type process. In this case, εt satisfies the martingale difference sequence (m.d.s.) condition,

i.e., E[εt|Ft−1] = 0 a.s., and thus E[εtεt−j ] = 0. Moreover, the true conditional quantile function can be

correctly specified as qy(τ |Xt) = X ′tβ0(τ), where Xt = (1, xt), β0(τ) = (F−1
ε (τ) + β0,0, β0,1)′. However,

mt(τ) = τ − 1(σtut − F−1
ε (τ) ≤ 0), which is the nonlinear transformation of εt = σtut, can exhibit

serial correlation for τ ∈ (0, 1) such that F−1
ε (τ) 6= 0, due to the serial dependence in the conditional

heteroskedasticity process σt. To ensure that Γj(τ) = 0 for all j 6= 0, we shall impose the m.d.s. assumption

of E[mt(τ)|Ft−1] = 0 a.s. This condition, however, is more restrictive than assuming a correctly specified

conditional quantile function as in (6) and essentially rules out the presence of serially correlated conditional

heteroskedasticity in εt.
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2.2 HAR LRV estimation in QR

For simplicity of the notation, we drop the dependence on the given quantile level τ in et(τ) and use et

hereafter and denote et(b) := yt − X ′tb and Ẑt = Xt(τ − 1(êt ≤ 0)) with êt := et(β̂(τ)). The time series

corrected standard errors and robust inference begin by formulating heteroskedasticity and autocorrelation

robust (HAR) LRV matrix estimator Ω̂(τ). In this paper, we study the following general class of the

quadratic HAR variance estimators. The LRV estimator takes the form:

Ω̂h(τ) :=
1

T

T∑
t=1

T∑
s=1

Qh

(
t

T
,
s

T

)
Ẑct Ẑ

c′
s , (7)

where Ẑct = Ẑt − T−1
∑T

s=1 Ẑs, and Qh(·, ·) is a symmetric weighting function which uses a smoothing

parameter h. By construction, our formulation of Ω̂h(τ) depends on h which is the level of smoothing

for various types of LRV estimators. Examples of Ω̂h(τ) include a popular class of conventional kernel

LRV estimators with Qh (r, s) = k ((r − s) /b) and h = 1/b, as studied in Galvao and Yoon (2024). The

kernel LRV estimators include the popular Newey-West (1987) HAC estimator with the Bartlett kernel

k(x) = 1(|x| ≤ 1) · (1 − |x|), as well as those utilize second-order kernels such as Parzen and Quadratic

Spectral functions, e.g., Andrews (1991). When Qh(r, s) = kρ(r−s) with h =
√
ρ, Ω̂h(τ) belongs to a class

of exponentiated kernel LRV estimators in Phillips et al. (2006).

Another important class is a class of orthonormal series LRV (OS-LRV) estimators, which is proposed

by Phillips (2005), Sun (2013), and Müller and Watson (2014). The OS-LRV estimator takes h = K and

sets the weight function equal to

Qh (r, s) =
1

K

K∑
k=1

Φk(r)Φk(s), (8)

where {Φk (r)}Kk=1 is a set of orthonormal basis functions on L
2[0, 1] satisfying

∫ 1
0 Φk (r) dr = 0. In this

paper, we employ the following set of finite basis functions:

{Φk (r)}Kk=1 = {Φ2k−1 (r) =
√

2 sin (2πkr) ,Φ2k (r) =
√

2 cos (2πkr) , k ∈ {1, 2, . . . ,K/2}}, (9)

where K is an even number. From this construction, the OS-LRV is an equal-weighted periodogram

(EWP) estimator that utilizes the first K/2 periodograms, e.g., Sun (2013) and Lazarus et al. (2019),

which corresponds to an estimator of the scaled spectral density at zero.

Let Ω̂u
h(τ) be an uncentered version of (7) that replaces Ẑct with Ẑt. Considering the kernel weighting

function Qh (r, s) = k ((r − s) /b) , with ST = Tb and h = 1/b, Galvao and Yoon (2023, Theorem 4.2-(a))

show that

Ω̂u
h(τ) = Ω̃u

h(τ) +Op

(
ST√
T

)
(10)
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holds, as ST , T →∞, where Ω̃u
h(τ) denotes the infeasible version of Ω̂u

h(τ) that replaces Ẑt with Zt. Based on

this result, Galvao and Yoon (2024) further establish the consistency of Ω̂u
h(τ), extending Andrews (1991)

in the conditional mean regression setting, i.e., Ω̂u
h(τ)

p→ Ω(τ). Their key rate condition is ST /
√
T = o(1),

which can be equivalently expressed as b = o(T−1/2) and thus falls within the conventional increasing-

smoothing (or small-b) asymptotics. The conventional asymptotics, elegant and convenient though it may

be, it completely ignore the estimation uncertainty in Ω̂u
h(τ) which is the key component of the time

series robust inference for QR. This issue has been well-recognized in the literature on HAR inference for

conditional mean regression, e.g., Kiefer and Vogelsang (2002, 2005), Müller (2007), and Sun et al. (2008,

2014a), and Hwang an Sun (2018), which naturally motivates a more accurate fixed-smoothing asymptotic

theory in QR, developed in this paper.

In (10), the termOp(ST /
√
T ) captures the estimation uncertainty of Zt(β̂(τ)) in Ω̂u

h(τ), with a stochastic

order of Op(ST /
√
T ) = Op(

√
Tb). This term converges to zero in probability under the increasing-smoothing

(or small-b) asymptotics with rate b = o(T−1/2). However, under our fixed-smoothing (fixed-b) asymptotic

framework, the Op(
√
Tb) term does not degenerate to zero in probability since b = O(1), rendering the

result in (10) inapplicable to our setting.

To address this challenge, our asymptotic analysis focuses on the demeaned Ω̂h(τ) instead of Ω̂u
h(τ).

In the mean linear regression model, the estimated score process is Ẑt = Xtêt, whose sample mean

T−1
∑T

s=1 Ẑs is always equal to zero. Thus, the use of the original Ẑt in (7) does not change Ω̂h(τ)

from Ω̂u
h(τ). In contrast, the non-linear and non-smooth QR score process in our setting yields a non-zero

small-order term T−1
∑T

s=1 Ẑs, whose stochastic order of magnitude is op(T
−1/2). As a result, the use of

demeaned Ẑct in Ω̂h(τ) can create a difference from Ω̂u
h(τ) in finite samples. We note that the issue of a

nonzero term T−1
∑T

s=1 Ẑs becomes more important if the non-smooth moment condition is over-identified.

See, for example, Hong and Li (2023), in the context of misspecified non-smooth moment conditions. In

our exactly identified QR setting, we employ the demeaned term Ẑct in LRV estimates to prove that the

estimation uncertainty inherent in Ẑt (via β̂(τ)) is properly controlled under the fixed-smoothing asymp-

totic framework. This process is discussed in more detail in the next section, which presents the main

theoretical contribution of this paper.

3 Fixed-smoothing Asymptotic Theory for Quantile Regression

To develop fixed-smoothing asymptotic theory for Ω̂h(τ), we start by reexpressing Ω̂h(τ) as

Ω̂h(τ) =
1

T

T∑
t=1

T∑
s=1

Q∗T,h

(
t

T
,
s

T

)
ẐtẐ

′
s, (11)

10



whereQ∗T,h(r, s) = Qh (r, s)−T−1
∑T

r̃=1Qh (r̃/T, s)−T−1
∑T

s̃=1Qh(r, s̃/T )+T−1
∑T

r̃=1

∑T
s̃=1 Qh(r̃/T, s̃/T ).

Let Ω̃h(τ) be an infeasible version of Ω̂h(τ), which replaces the plugged-in estimate for Ẑt in Ω̂(τ) with Zt,

i.e.,

Ω̃h(τ) =
1

T

T∑
t=1

T∑
s=1

Q∗T,h

(
t

T
,
s

T

)
ZtZ

′
s. (12)

The key step in our asymptotic approximation for Ω̂h(τ) is to show that

Ω̂h(τ) = Ω̃h(τ) + op(1) (13)

holds, as T → ∞ such that the smoothing parameter h is fixed. To achieve this goal, we introduce an

asymptotically equivalent version of (11):

Ω̂∗h(τ) =
1

T

T∑
t=1

T∑
s=1

Q∗h

(
t

T
,
s

T

)
ẐtẐ

′
s,

where Q∗h (r, s) := limT→∞Q
∗
T,h(r, s) is the limit of the centered weight function, given by:

Q∗h (r, s) = Qh(r, s)−
∫ 1

0
Qh(r̃, s)dr̃ −

∫ 1

0
Qh(r, s̃)ds̃+

∫ 1

0

∫ 1

0
Qh(r̃, s̃)dr̃ds̃. (14)

In the proof of Theorem 1 below, we show that Ω̂∗h(τ)− Ω̂h(τ) = op(1) holds for any fixed h. This allows

us to focus on Ω̂∗h(τ) with the following representation of the centered weighting function Q∗h (r, s) :

Q∗h (r, s) =

∞∑
k=1

λkΦk (r) Φk (s) , (15)

where {Φk(·)}∞k=1 is a sequence of continuously differentiable orthonormal basis functions over [0, 1]. For

notational simplicity, we suppress the dependencies of h on {λk}∞k=1 and {Φk (·)}∞k=1. The boundedness of

Q∗h (r, s) implies that Φk(·) are uniformly bounded over [0, 1] for all k ∈ N. Additionally, the orthonormal

property, Φk(·) ensures that∫ 1

0
Φk(r)dr = 0 and

∫ 1

0

∫ 1

0
Φj(s)Φk(r)dsdr = 1(j = k)

for all j, k ∈ N. As a result,
∑∞

k=1 λk =
∫ 1

0 Q
∗
h (r, r) dr is finite and is uniformly bounded over h. Also, the

series on the right-hand side of (15) converges to Q∗h (r, s) absolutely and uniformly over (r, s) ∈ [0, 1]×[0, 1],

which allows us to re-express Ω̂∗h(τ) in the following form:

Ω̂∗h(τ) =
∞∑
k=1

λk

(
1√
T

T∑
t=1

Φk

(
t

T

)
Ẑt

)(
1√
T

T∑
s=1

Φk

( s
T

)
Ẑs

)′
. (16)

Since {λk}∞k=1 and {Φk (·)}∞k=1 are the eigenvalues and eigenfunctions of the bivariate positive definite func-

tion Q∗h (r, s), this representation constitutes a spectral decomposition of the compact Fredholm operator

with kernel Q∗h (r, s), see Knessl and Keller (1991) and Sun (2014b) for more details. We note that the

11



eigen decomposition in (15) is used solely for theoretical proof to establish the fixed-smoothing limit of

Ω̂h(τ) in (7). As shown in the next section, computing Ω̂∗h(τ) with (16) is not necessary in practice to

apply our fixed-smoothing asymptotic theory to HAR inference.

Taking advantage of the expression in (16), we can address the estimation uncertainties embodied in

Ω̂∗h(τ). Consider the following component using the k-th order basis function Φk (·) :

1√
T

T∑
t=1

Φk

(
t

T

)
Ẑt =

1√
T

T∑
t=1

Φk

(
t

T

)
Xt(τ − 1(êt ≤ 0)) (17)

which is the weighted average of the estimated QR score process Ẑt. Due to the non-differentiability of

Zt(b) = Xt(τ−1(yt ≤ X ′tb)) with respect to b, the standard Taylor expansion for the right-hand side of (17)

is not possible. To deal with this challenge under fixed-smoothing asymptotics, we impose the following

assumptions.

Assumption 1. (i) For kernel LRV estimators, the positive definite kernel function k (·) ∈ [−1, 1] satisfies

the following conditions: For any b ∈ (0, 1] and ρ ∈ [1,∞), kb (x) = k (x/b) and kρ(x) = kρ(x) are

symmetric, continuous, piecewise monotonic, and piecewise continuously differentiable functions on [−1, 1]

such that
∫∞
−∞ k

2(x) <∞. (ii) For the OS-LRV variance estimator, the basis functions Φk (x) are piecewise

monotonic, continuously differentiable, and orthonormal in L2[0, 1], and
∫ 1

0 Φk (x) dx = 0.

Assumption 2. The vector process {(Yt, X ′t)′}Tt=1 is strictly stationary and α-mixing, where the mixing

coeffi cient α[k] satisfies α[k] ≤ exp(−a0k) for some a0 > 0.

Assumption 3. Let f(e|x) be the conditional density of et given Xt = x. i) For each x, f(e|x) is

twice continuously differentiable with respect to e and satisfies the following conditions: f(0|x) > 0 and

|f(e|x)|, |f ′(e|x)|, |f ′′(e|x)| ≤ C for some positive constant C which does not depend on x and e. ii) The first

order condition in (1) and the Bahadur representation in (3) hold. iii) The matrix Ω(τ) is non-singular.

Assumption 4. i) The zero mean process {Zt}Tt=1 with Zt = Xt(τ−1(et ≤ 0)) satisfies that
∑∞

j=−∞ ||E[ZtZt−j ]|| <

∞ and
∑∞

j=−∞ |j|q0 ||E[ZtZt−j ]|| < ∞ for some q0 ≥ 1. ii) There exists a constant ∆ > 0 such that

||X||∞ := max1≤t≤T ||Xt|| ≤ ∆T 1/5. iii) E[||Xt||4ν ] ≤ ∞ for some ν > 1, and, with Xt = (X1,t, . . . , Xd,t)
′,

maxv1,v2∈{1,...,4} E[|Xv1
a,tX

v2
b,t+s]] <∞ for all a, b ∈ {1, . . . , d} and s ∈ {0,±1,±2, . . .}.

Assumption 5. As T →∞, T−1/2
∑T

t=1 Φk(t/T )Zt converges weakly to a continuous distribution, jointly

over k ∈ {0, 1, ..., J} such that

P

(
1√
T

T∑
t=1

Φk

(
t

T

)
Zt ≤ x for k = 0, 1, ..., J

)

= P

(
Ω1/2(τ)

1√
T

T∑
t=1

Φk

(
t

T

)
ut ≤ x for k = 0, 1, ..., J

)
+ o(1),

12



for every fixed J ∈ N, x ∈ Rd where Φ0 (·) = 1, ut
i.i.d.∼ N(0, Id), and Ω1/2(τ) is a matrix square root of

Ω(τ) such that Ω1/2(τ)Ω1/2(τ)′ = Ω(τ).

Assumption 1 is on the kernel function and basis functions that construct Qh(r, s) in Ω̂h(τ). It consists

of the same conditions as the smooth moment condition outlined in Sun (2014b), implying that all afore-

mentioned HAR variance estimator can be applied to the QR setting. Additionally, Assumption 1 ensures

the unified representation in (16) for all types of HAR variance estimators we consider.

The α-mixing and decaying rate conditions in Assumption 2 implies that α[k] ≤ Bak for some a ∈ (0, 1)

and B > 0. As a result, we have that
∑∞

k=1(α[k])1/2 < ∞, which is used to bound the variance of the

empirical process Gk,T (b) defined below. Examples for Assumption 2 include a linear time series process

for et =
∑∞

j=0 ajvt−j , where the coeffi cient aj shrink to zero exponentially fast, and {vt} are independent

with a finite second moment. A suffi cient condition for α-mixing requires vt to be a continuous random

variable with a smooth density, which excludes the case where vi is a Bernoulli-type random variable. For

more detailed discussions on mixing processes, see Andrews (1984) and Tuan and Lanh (1985).

Assumption 3 consists of mild conditions similar to Assumption 2 in Galvao and Yoon (2024). It includes

the standard Bahadur representation for time series QR and the positive definite LRV matrix. Assumption

4-i) imposes on bounds on the infinite summations of the autocovaraince matrices, which is comparable to

the smoothness of spectral density for the QR score process Zi. The second part of Assumption 4 is similar

to Assumption 3 in Galvao and Yoon (2024), and imposes standard boundedness conditions on the norm

and maximum of the regressors.

We note that, in comparison to the increasing-smoothing asymptotic framework utilized by HAC ap-

proach, our fixed-smoothing asymptotics approach demands fewer technical conditions in Assumptions 3

and 4. Specifically, we do not impose the strict requirements on the joint conditional density of the QR

error, the higher-order cumulants of the quantile scores process, or summability conditions for the deriv-

atives of the covariance matrices, as outlined by Assumptions 3 and 5 in Galvao and Yoon (2024). This

indicates the advantage of our fixed-smoothing asymptotic approach, which can be applied to a broader

range of data generation processes in time series QR.

Our last condition in Assumption 5 is to impose a joint Central Limit Theorem (CLT) condition on

the weighted score process T−1/2
∑T

t=1 Φk (t/T )Zt for k ∈ {1, . . . , J} and for every fixed J ∈ N. It implies

that T−1/2
∑T

t=1 Φk(t/T )Zt = Op(1) holds uniformly over k ∈ {1, . . . , J}. The assumption also guarantees

the Gaussian approximation of the HAR variance estimator, which is the key result of our fixed-smoothing

asymptotic theory for Ω̂h(τ). For completeness, we provide some primitive suffi cient conditions for the CLT

condition in subsection 8.3 of Appendix.
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Let NεT (β0(τ)) = {b : ||b− β0(τ)|| ≤ εT } be a shrinking neighborhood of the true parameter β0(τ) for

a positive sequence εT that converges to zero at
√
T -rate. We define an empirical process for Zt(b) over

b ∈ NεT (β0(τ)) which is weighted by the orthonormal basis function Φk(·):

Gk,T (b) :=
1√
T

T∑
t=1

Φk

(
t

T

)
(Zt(b)− E[Zt(b)])

for k ∈ {0} ∪ N. When k = 0, we let Φk (·) = 1 so that corresponding Gk,T (b) becomes the standard

empirical process. Under Assumptions 1—4, Lemma 4 in subsection 8.4 of Appendix proves that

sup
b∈NεT (β0(τ))

||Gk,T (b)−Gk,T (β0(τ))|| = op(1) (18)

holds uniformly over k ∈ {0}∪N. This result extends the standard empirical process theory for i.i.d. data,

e.g., Van Der Varrt and Wellner (1996), to a sequence of time series empirical processes with weights given

by Φk(·). The result provides the essential technical step to formally prove the result in (13). Specifically,

we control the uncertainty of β̂(τ) by considering the following relation:∥∥∥∥∥ 1√
T

T∑
t=1

Φk

(
t

T

)
(Zt(β0(τ))− Zt(β̂(τ)))

∥∥∥∥∥ (19)

≤ sup
b∈NεT (β0(τ))

||Gk,T (b)−Gk,T (β0(τ))||+
(

1

T

T∑
t=1

Φk

(
t

T

))
·
(

sup
b∈NεT (β0(τ))

√
T ||E[Zt(b)]||

)
. (20)

By virtue of (18), the first term on the right-hand side of (20) shrinks to zeros in probability uniformly over

k. Additionally, the standard QR assumptions imposed in Assumption 3, including the absolute continuity

of et = et(τ), bounded moments of Xi guarantee the smoothness of the expected value in the second term

of (20). Taking advantage of these results, we can apply the standard Taylor expansion to E[Zt(b)] and

obtain the stochastic boundedness, i.e., supb∈NεT (β0(τ)),

√
T · ||E[Zt(b)]|| = Op(1).

It is important to point out that the zero mean and uniform boundedness properties of basis functions

{Φk(·)}∞k=1 guarantee that the second term in (20) shrinks to zero, i.e., T
−1
∑T

t=1 Φk(t/T ) = o(1), uniformly

over k ∈ N. The (asymptotic) zero mean property of {Φk(·)}∞k=1 stems from the demeaned score process

Ẑct in our LRV estimator formula (7). This property is then carried over to the recentering of the original

weight function Qh(·, ·) to Q∗h(·, ·) presented in (14) and (15). As a result, as T →∞, we have that

1√
T

T∑
t=1

Φk

(
t

T

)
Zt(β̂(τ))︸ ︷︷ ︸

=Ẑt

=
1√
T

T∑
t=1

Φk

(
t

T

)
Zt + op(1),

where the op(1) term does not depend on k ∈ N. Together with
∑∞

k=1 λk = O(1) and the uniform bound-

edness of Φk(·) over k ∈ N, this result allows us to control all estimation errors captured in (16), i.e., as

T →∞ such that h is fixed,

Ω̂∗h(τ) = Ω̃∗h(τ) + op(1),
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where Ω̃∗h(τ) is the infeasible version of Ω̂∗h(τ), given by

Ω̃∗h(τ) =
1

T

T∑
t=1

T∑
s=1

Q∗h

(
t

T
,
s

T

)
ZtZ

′
s. (21)

Building on these findings, Theorem 1 below formally proves the asymptotic equivalence in (13). We

also show that the LRV estimate weakly converges to a random limit, which extends the fixed-smoothing

asymptotic theory in the conditional mean regression, such as Kiefer and Vogelsang (2005), Sun (2014

a&b), for the QR setting.

Theorem 1. Suppose Assumptions 1—5 hold. Then, as T → ∞ such that h is fixed, the asymptotic

equivalence result in (13) holds. Also, we have that

Ω̂h(τ)
d→ Ωh,∞(τ) := Ω1/2(τ)Sh,∞Ω1/2(τ)′, (22)

where

Sh,∞ =
∞∑
j=1

λjZjZ′j with Zj
i.i.d.∼ N(0, Id). (23)

The proof of Theorem 1 in subsection 8.5 of Appendix. It shows that the recentered QR score process

Ẑct in Ω̂h(τ) effectively removes the estimation uncertainty of β̂(τ) embodied in Ω̂h(τ). Consequently, the

fixed-smoothing limit of Ω̂h(τ) can be obtained by investigating its infeasible counterparts Ω̃h(τ) and Ω̃∗h(τ),

which are defined in (12) and (21), respectively. Specifically, the weak convergence result in Lemma 1-(d)

of Sun (2014b) can be applied to Ω̃∗h(τ), yielding

Ω̃∗h(τ)
d→ Ω1/2(τ)

(∫ 1

0

∫ 1

0
Q∗h (r, s) dWd(r)dW

′
d(s)

)
Ω1/2(τ)′. (24)

The series representation in (15) then leads us to an equivalent representation of the weak convergence

limit in (24):

Ω1/2(τ)
∞∑
j=1

λj

(∫ 1

0
Φj (r) dWd(r)

)(∫ 1

0
Φj (s) dWd(s)

)′
Ω1/2(τ)′, (25)

where Wd(·) is d-dimensional standard Brownian motion. Utilizing the zero mean and orthonormal prop-

erties of {Φk (·)}∞k=1, we have then
∫ 1

0 Φk (r) dWd(r)
d
= Zk with Zk

i.i.d.∼ N(0, Id) and obtain the weak

convergence limit in (23).

4 HAR Inference for Quantile Regression

4.1 Fixed-smoothing asymptotic inference for QR

Building upon the fixed-smoothing asymptotic theory developed in the previous section, our next goal

is to provide more accurate HAR-based asymptotic inferences for QR model. We consider the following
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standard Wald statistic for testing H0 : Rβ0(τ) = r ∈ Rp:

WT (τ) :=
(
Rβ̂(τ)− r

)′ (
RΣ̂(τ)R′/T

)−1 (
Rβ̂(τ)− r

)
, (26)

where R is a p × d matrix with p ≤ d and full rank, and Σ̂(τ) = D̂(τ)−1Ω̂(τ)D̂(τ)−1. For p = 1 and for

one-sided alternatives, the t statistic can be defined as

TT (τ) :=
Rβ̂(τ)− r√
RΣ̂(τ)R′/T

. (27)

The result in Theorem 1 shows that Ω̂h(τ) in Σ̂(τ) converges in distribution to the random matrix Ωh,∞(τ),

which is a scaled infinite mixture of quadratic Gaussian vectors. Our next asymptotic theory establishes

non-standard limiting distributions for Wald and t statistics under fixed-smoothing asymptotics.

Theorem 2. Let S[p]
h,∞ =

∑∞
j=1 λjZp,jZ′p,j , where Zp,j :=

∫ 1
0 Φj (r) dWp(r)

i.i.d.∼ N(0, Ip) and Zp :=

Wp(1) ∼ N(0, Ip), which is independent of S[p]
h,∞. Under Assumptions 1—5, and with D̂(τ)

p→ D(τ), the

following statements hold as T →∞ such that h fixed:

(a) WT (τ)
d→W∞ := Z′p[S

[p]
h,∞]−1Zp and TT (τ)

d→ T∞ = Zp/
√
S[p]
h,∞ with p = 1.

(b) For the OS-LRV case, W∞ and T∞ in (a) satisfy that W∞
d
= (pK)/(K − p + 1)FK−p+1 and

T∞
d
= TK with p = 1, where Fp,K−p+1 is F -distribution with degrees of freedom (p,K − p+ 1), and TK is

t-distribution with degree of freedom K.

Theorem 2-(a) shows that the fixed-smoothing asymptotic distributions for WT (τ) and TT (τ) do not

coincide with the standard chi-square and Gaussian limits but instead yield non-standard limits. The

primary source of these non-standard limits is the random denominator S[p]
h,∞, which depends on the choice of

the weight function Qh(r, s) and the smoothing parameter h, as reflected through {λj}∞j=1. Nevertheless, the

fixed-smoothing limits,W∞ and T∞, are free of nuisance parameters such asD(τ) and Ω(τ). This nuisance-

free property enables the simulation of their critical values in practice. Specifically, with ut
i.i.d.∼ N(0, Ip)

and ūB = B−1
∑B

t=1 ut, define

S[p]
h,B =

1

B

B∑
t=1

B∑
s=1

Qh

(
t

B
,
s

B

)
(ut − ūB)(us − ūB)′ (28)

=
1

B

B∑
t=1

B∑
s=1

Q∗B,h

(
t

B
,
s

B

)
utu
′
s.

From the equivalent representation of the random limit

S[p]
h,∞ =

∞∑
j=1

λjZp,jZ′p,j =

∫ 1

0

∫ 1

0
Q∗h (r, s) dWp(r)dW

′
p(s),
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and S[p]
h,B

d→ S[p]
h,∞, as B → ∞, we can approximate the random quantity S[p]

h,∞ using S[p]
h,B for suffi ciently

large B. As a result, the critical values for the non-standard limits W∞ and T∞ can be easily generated

by repeatedly drawing

Z′p[S
[p]
h,B]−1Zp and Zp/

√
S[p]
h,B,

respectively, where Zp ∼ N(0, Ip). Notably, the eigen decompositions in (15) is not required to implement

fixed-smoothing asymptotic inference. Instead, computing (28) using random draws of standard normal

vectors and the weight functions Qh (·, ·) is suffi cient to generate the non-standard fixed-smoothing limits.

In (28), the number B represents the number of simulation draws used to approximate the Brownian

motion process Wp(·) in S[p]
h,∞. The choice B is related to the approximation of Brownian motion, and a

larger B generally improves the quality of the approximation but increases computational burden. The

literature on HAR inference suggests that setting B equal to T for moderately large T , say, T ≥ 200, can

simplify the computational burden while ensuring reliable finite-sample performance in fixed-smoothing

asymptotic inference. See Sun (2014b) for details.

The result in Theorem 2-(b) implies that the Wald and t statistics using OS-LRV estimators converge

to scaled versions of the standard F and t limits under fixed-smoothing (K) asymptotics. This result

contrasts with Theorem 2-(a), which yields non-standard fixed-smoothing limits. To see this, note that the

weight function Qh(r, s) for OS-LRV estimation indicates that λj = 1/K for j ∈ {1, . . . ,K} and λj = 0

for j ≥ K. Consequently, we have

S[p]
h,∞ =

1

K

K∑
j=1

Zp,jZ′p,j
d
=

1

K
Wp(K, Ip),

where Wp(K, Id) is a scaled Wishart random matrix with K degrees of freedom. Therefore, the limit

distributionW∞ can be represented as Z′p[Wp(K, Ip)/K]−1Zp, which follows a scaled Hotelling’s T -squared

distribution. Using the well-known relationship between the T -squared and F , distributions up to the scale,

we can express the fixed-smoothing limits for the Wald and t statistics in terms of the standard F and

t distributions, respectively. Similar to the non-standard fixed-smoothing asymptotic critical values in

Theorem 2-(a), using standard F and t critical values for OS-LRV is expected to reduce over-rejection

when testing H0 : Rβ0(τ) = r in finite samples. This is because the F and t limits account for the

estimation uncertainty of the nonparametric estimator Ω̂(τ) from the studentized HAR statistic. This

feature contrasts with the conventional chi-square and normal approximations under increasing-smoothing

asymptotics, which overlook the uncertainty arising from Ω̂(τ).

In summary, we establish that alternative fixed-smoothing asymptotic results and corresponding nuisance-

parameter-free asymptotic inferences in the non-smooth QR setting. Importantly, we show that the Wald

and t inferences using OS-LRV admit the exact F and t asymptotic critical values, which do not require
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any simulations for non-standard critical values in practice. While the kernel LRV yields non-standard

fixed-smoothing critical values, practitioners can easily simulate them using only standard normal vectors

and the kernel weight specified for Qh(·, ·), which can provide more accurate Wald inferences than standard

Chi-square tests in increasing-smoothing asymptotics.

4.2 Extension to quantile GMM and self-normalized inference

In this subsection, we discuss a possible extension of our HAR QR inference to non-smooth generalized

method of moments (GMM) for quantile IV regression models. We also discuss the connection between

our fixed-smoothing asymptotic inference and the self-normalization approach for QR.

Consider the non-smooth GMM for quantile models, e.g., de Castro et al. (2019):

E[Z̃t(β0(τ))] = E[Wt(τ − 1(yt ≤ X ′tβ0(τ))] = 0

if and only if b = β0(τ) for a small neighborhood of β0(τ). The covariate Xt ∈ Rd may include both

endogenous and exogenous variables, and Wt ∈ Rm is a vector of exogenous instrumental variables that

may include exogenous components in Xi. We assume that m ≥ d, so that the QR-GMM model can

be overidentified. The QR-GMM estimator minimizes a weighted quadratic norm of the sample moment

vector:

β̂(τ) = arg min
b∈B

(
T∑
t=1

Z̃t(b)

)′
MT

(
T∑
t=1

Z̃t(b)

)
,

where Z̃t(b) = Wt(τ − 1(yt ≤ X ′tb), and B ⊆Rd is a compact parameter set. The m × m matrix MT is

a weight matrix that converges in probability to a strict positive definite matrix M. Note that when

Wt = Xt, the model reduces to the exactly identified QR model introduced in Section 2, where the use of

MT is unnecessary for obtaining β̂(τ), as it can be computed by solving the sample moment condition in

(1).

Under some regular conditions, the standard M -estimation theory with non-smooth moment function,

e.g., Pakes and Pollard (1989), can be applied to obtain that

√
n(β̂(τ)− β0(τ)) = (G(τ)′MG(τ))−1G(τ)′M 1√

T

T∑
t=1

Zt(τ − 1(yt ≤ X ′tβ0(τ))︸ ︷︷ ︸
d→N(0,Ω̃(τ))

+ op(1)

d→ N(0, Σ̃(τ)) with Σ̃(τ) = D̃(τ)−1Ω̃(τ)D̃(τ)−1,

where

D̃(τ) = (G(τ)′MG(τ))−1G(τ)′M and G(τ) = E[f(0|Wt, Xt)WtX
′
t].
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Let Ω̂h(τ) denote the HAR LRV estimator of the long-run variance of the non-smooth moment process

{Z̃t(β0(τ)}, denoted as Ω̃(τ). Ω̂h(τ) can be obtained by replacing Ẑt in (7) withWt(τ−1(yt ≤ X ′tβ̂(τ)). Also,

we can formulate theWald and t statistics for quantile-GMM by substituting D̂(τ) with (Ĝ(τ)′MT Ĝ(τ))−1Ĝ(τ)MT

in Σ̂(τ) := D̂(τ)−1Ω̂(τ)D̂(τ)−1 from (26) and (27), respectively, where Ĝ(τ) is a consistent estimate of the

Jacobian matrix G(τ). The corresponding fixed-smoothing inference follows the same approach established

in the previous subsection. One complication arises when estimating the feasible two-step effi cient GMM,

i.e., when MT is formulated by HAR LRV estimates for the non-smooth moment process Ω̂h(τ). In this

case, the GMM weight matrix converges to a random matrix under fixed-smoothing asymptotics, which

can lead to HAR inference results differing from those in the one-step GMM framework developed in this

paper, e.g., Hwang and Sun (2017) and Hwang and Valdés (2023). Extensions in this direction are currently

under development and will be addressed in a separate paper.

We next discuss the relationship between fixed-smoothing asymptotics and an alternative self-normalized

(SN) approach in the time series literature, e.g., Shao (2010) and Zhou and Shao (2013). Instead of esti-

mating the asymptotic variance of the QR estimator, the SN approach constructs a studentized statistic

by utilizing recursive estimations of QR coeffi cients, starting from the subsample periods {1, . . . , bcT c+1},

where c ∈ (0, 1) is a tuning parameter. Specifically, let {β̂[s](τ)}Ts=bcT c+1 denote the sequence of QR

estimators based on the subsamples of {1, . . . , s} for s ≤ T . The SN statistic is then defined as

SNT (τ ; c) := (Rβ̂(τ)− r)′
(
RΥ(τ ; c)R′/T

)−1
(Rβ̂(τ)− r), (29)

where the self-normalized denominator Υ(τ ; c) is given by

Υ(τ ; c) =
1

T 2

T∑
s=bcT c+1

s2
(
β̂[s](τ)− β̂(τ)

)(
β̂[s](τ)− β̂(τ)

)′
. (30)

A recent work by Hoga and Schulz (2025) establishes the asymptotic distribution of SNT (τ ; c) and shows

that

SNT (τ ; c)
d→ Z′p[SN[p]

c,∞]−1Zp,

where Zp and SN
[p]
c,∞ are independent, and

SN[p]
c,∞ =

∫ 1

c
(Wp(s)− sWp(1))(Wp(s)− sWp(1))′ds.

To connect the SN approach to our fixed-smoothing asymptotic inference, we consider Wald statistics based

on the kernel LRV, where the kernel is chosen as the Bartlett function, i.e., Qh(r, s) = k((r − s)/b) with

k(x) = 1(|x| ≤ 1) · (1− |x|) and h = 1/b, with no truncation, meaning that the smoothing parameter h is
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chosen as 1 for b = 1/h. The corresponding HAR LRV can be formulated as

Ω̂h(τ) =
1

T

T∑
t=1

T∑
s=1

Qh

(
t

T
,
s

T

)
Ẑct Ẑ

c′
s =

1

T

T∑
t=1

T∑
s=1

(
1− |t− s|

T

)
Ẑct Ẑ

c′
s (31)

=
1

T

T∑
t=1

T∑
s=1

(
1− |t− s|

T

)
ZctZ

c′
s︸ ︷︷ ︸

=Ω̃h(τ)

+ op(1), (32)

where the last equation follows by Theorem 1. Using the same algebra shown in Kiefer and Vogelsang

(2002), Ω̃h(τ) in (32) can be equivalently expressed as

Ω̃h(τ) =
2

T

T∑
s=1

[
1√
T

s∑
t=1

Zct

] 1√
T

s∑
t̃=1

Zc
t̃

′ ,
which converges in distribution to the random limit:

Ω̃h(τ)
d→ 2Ω1/2(τ)

∫ 1

0
(Wp(s)− sWp(1))(Wp(s)− sWp(1))′dsΩ1/2(τ)′.

This implies that the Wald statistic using (31) converges to the nonstandard limit:

WT (τ)
d→ Z′p[S

[p]
h,∞]−1Zp,

where Zp and S
[p]
h,∞ are independent, and the random limit S[p]

h,∞ defined in Theorem 2 can be represented

as

S[p]
h,∞ = 2

∫ 1

0
(Wp(s)− sWp(1))(Wp(s)− sWp(1))′ds

As a result, up to the scaling factor 2, the random limit S[p]
h,∞ derived in our fixed-smoothing asymptotic

theory has the same form to that of SN[p]
c,∞ with c = 0. The key difference is that the SN approach is

infeasible when the tuning parameter c is set to 0, as Υ(τ ; 0) requires the estimation of β̂[s](τ) starting

from a single observation, i.e., s = 1, 2, 3, . . . T, which is challenging to compute. Thus, in practice, selecting

an appropriate nonzero tuning parameter c ∈ (0, 1) is necessary to ensure that the recursive subsample

estimators, β̂[bcT c+1](τ), β̂[bcT c+2](τ), . . . , perform well in finite samples, and the implementation of the

SN statistic in (29) is feasible. In contrast, our formulation of the HAR Wald statistic can encompass

self-normalized asymptotic inference as a special case within QR-HAR inference by simply employing the

Bartlett kernel function with b = 1 in HAR LRV estimation. Unlike the asymptotic inference based on the

self-normalized statistic SNT (τ ; c), the fixed-smoothing asymptotic inference using (31) does not require

c, which determines the initial subsample periods for the recursive estimation {β̂[s](τ)}Ts=bcT c+1 in Υ(τ ; c).

5 Practical Implementation of QR-HAR Inference

In this section, we provide a practical recommendation for QR-HAR inferences, focusing on the choice of the

smoothing parameter. Given the convenient features of standard F and t critical values and their improved
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finite-sample performance in the conditional mean regression setting, e.g., Sun (2013) and Lazarus et al.

(2021), we focus on the asymptotic F and t QR-HAR inference presented in Theorem 2-(b), which can be

implemented via OS-LRV.

The smoothing parameter h in the series OS-LRV estimator is equal to the number of basis functions K

employed. The standard HAC approaches focus on the (asymptotic) mean squared error of the infeasible

LRV estimator Ω̃h(τ) under increasing-smoothing asymptotics. These include Andrews (1991) and Phillips

(2005) in the conditional mean regression, and Galvao and Yoon (2024) in the QR setting. Among these,

we extend the OS-LRV result in Phillips (2005) to our QR setting as follows: Assume that T and K

increase to infinity such that K/T → 0, then we have that

MSE(Ω̃h(τ)) = E
[
vec(Ω̃h(τ)− Ω(τ))′Wvec(Ω̃h(τ)− Ω(τ))

]
=
K4

T 4
(vec(B(τ))′Wvec(B(τ))) +

1

K
Tr[W(Id2 +Kdd)(Ω(τ)⊗ Ω(τ))] (33)

+ o

(
K4

T 4
+

1

K

)
,

where W is a d2× d2 weight matrix chosen by practitioners, Kdd is the d2× d2 commutation matrix, vec(·)

denotes the column-by-column vectorization operator. The d× d matrix B(τ) captures the bias of Ω̃h(τ),

which is of order K2/T 2:

B(τ) := lim
T→∞

(
T

K

)2 (
E[Ω̃h(τ)]− Ω(τ)

)
= −π

2

6

∞∑
j=−∞

j2Γj(τ).

It is then straightforward to show that the leading term of (33) is minimized at:

K∗MSE =

⌈(
Tr[W(Id2 +Kdd)(Ω(τ)⊗ Ω(τ))]

4vec(B)′Wvec(B(τ))

)1/5

· T 4/5

⌉
.

The optimal choice K∗MSE that minimizes asymptotic MSE is motivated by classical work on spectral

density estimation, such as Parzen (1957) and Hannan (1970), where their main focus is on the spectral

density of {Zt} at the zero point, which is equal to the LRV Ω(τ)/2π. However, this choice may not be

ideal for hypothesis testing and constructing confidence intervals, which are the ultimate goals in robust

QR inference. In the conditional mean regression setting, it has been shown that HAC-type inferences

using the MSE-optimal smoothing parameter can have large size distortions in finite samples, e.g., Lazarus

et al. (2019).

An alternative to the MSE-based approach is to select the smoothing parameter K that minimizes

testing-oriented loss functions. The construction of the testing-oriented smoothing parameter begins by

transforming the original QR inference into the following p-dimensional location model:

Wt = µ0 + vt ∈ Rp for t ∈ {1, . . . , T} (34)
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with µ0 = E[Wt]. We are interested in testing H0: µ0 = 0 against H1: µ0 6= 0, with corresponding Wald

statistic defined as:

W̃T (τ) =
(√

T (W̄T − µ0)
)′

Σ̃−1(τ)
(√

T (W̄T − µ0)
)

(35)

=

(
1√
T

T∑
t=1

vt

)′
Σ̃−1(τ)

(
1√
T

T∑
t=1

vt

)
,

where Σ̃(τ) = K−1
∑K

j=1 ŨjŨ
′
j for Ũj = T−1/2

∑T
t=1 Φj(t/T ) (vt − v̄T ).

The error process {vt}, defined on the same probability space as the original data {Yt, X ′t}, has zero

mean and is assumed to be a covariance-stationary process that shares the same autocovariance structure

as {R (D(τ))−1 Zt}. This implies that

√
n(W̄T − µ0) =

1√
T

T∑
t=1

vt
d→ N(0, RΣ(τ)R′);(

K − p+ 1

K

)
W̃T (τ)

d→ pFK−p+1,

under H0 : µ0 = 0. Therefore, the testing problem in (34) is asymptotically equivalent to testing the

original null hypothesis in QR, H0 : Rβ0(τ) = r. Also, the Wald statistic W̃T (τ) shares the same weak

convergence limit as WT (τ) under fixed-smoothing asymptotics.

We consider the following set for the sequence of local data generation:

CT (δ2) :=

{
(RΣ(τ)R′)1/2u√

T
;u ∈ Rp

}
, (36)

where u is uniformly distributed on a p-dimensional sphere with radius δ ≥ 0. We will choose K to follow

the classical Neyman-Pearson (NP) principle that maximizes a power of HAR inference subject to a level-α

of the test. Specifically, given δ > 0, the optimal K in HAR-inference satisfies:

Maximize P (Reject H0|When H1(δ2) : µ0 ∈ CT (δ2) with δ > 0 is true) (37)

subject to P (Reject H0|When H0 : µ0 = 0 is true) ≤ α. (38)

This genuine notion of the testing-optimal K was first introduced by Sun et al. (2008) in the conditional

mean regression setting with kernel-HAR inference and was further extended to the OS-HAR by Sun

(2011, 2013). See also Lazarus et al. (2018) and Lazarus et al. (2021) for other versions of the testing-

optimal criterion within a non-NP framework. We will show that the NP-approach can be adapted to our

HAR-QR-setting.

We first want to approximate the exact probabilities in (37) and (38) using higher-order expansion

of them. To achieve this goal, we assume that {vt} is a Gaussian process. This assumption for {vt} is a
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strong restriction, but it should not be interpreted as applying to the true distribution for its approximating

target {R (D(τ))−1 Zt} in QR. This is because our fixed-smoothing asymptotic critical value pFαp,K−p+1

is valid for a broader range of non-Gaussian data. Additionally, using the infeasible quantity D(τ) in

{R (D(τ))−1 Zt} isolates the problem of LRV estimation in HAR-QR inference from the non-parametric

estimation quantity D̂(τ). Under these assumptions, we can examine the higher-order expansion of HAR-

inference’s null rejection and power probabilities. This enables us to derive a closed-form formula for

the Neyman-Pearson problem in (37) and (38) without relying on complex Edgeworth-type expansions.

We could establish the higher-order expansion without these assumptions, but it would require including

many additional terms that are irrelevant to the smoothing parameter in the expansion of the probability

distribution for W̃T (τ), as shown in Sun and Phillips (2008).

Let Gp,δ2(·) be the cumulative distribution function (CDF) of χ2
p(δ

2), which is the non-central chi-

squared distribution with the non-centrality parameter δ2. When δ2 = 0, Gp(·) := Gp,δ2(·) denotes the

cumulative distribution function of a χ2-random variable with p-degrees of freedom, with the corresponding

(1 − α)-quantile χαp . Then, the result from Sun (2011, Theorem 5) can be applied to our setting in (34)

as follows: If T and K increase to infinity such that K/T → 0 under the data generation process of

µ0 ∈ CT (δ2), we have that

P

((
K − p+ 1

K

)
W̃T (τ) > z

)
= 1−Gδ2,p(z)−

(
K

T

)2 (
G′δ2,p(z)z

)
B̄(τ)

− 1

K

(
G′′δ2,p(z)z

2
)

+ o

(
K2

T 2
+

1

K

)
+O

(
1

T

)
, (39)

where G′δ2,p(·) and G
′′

δ2,p(·) denote the first and second derivatives of G
′
δ2,p(·), respectively. The constant

B̄(τ) is defined as follows:

B̄(τ) := B̄(R,D(τ),Ω(τ), B(τ)) =
1

p
· Tr([(RB̃R′)][RΣ(τ)R′]−1) (40)

with B̃ := (D(τ))−1B (D(τ))−1 . In (39), the second and the third terms on right-hand side captures two

different effects: (
K

T

)2

G′δ2,p(z)zB̄(τ) : Bias effect of RΣ̃(τ)R′;

1

K
G′′δ2,p(z)z

2 : Variance effect of RΣ̃(τ)R′,

which implies that there is an opportunity to select K to balance these effects under the testing-oriented

loss function specified in (37) and (38). Now, we shall go one step further by considering the asymptotically

level-α HAR inference that uses the fixed-K critical value. Let F1−α
p,K−p+1 be (1− α)-quantile of Fp,K−p+1.

Using the relation shown in equation (5) of Sun (2013), we can show that, if µ0 = 0,

P

((
K − p+ 1

K

)
W̃T (τ) > pFαp,K−p+1

)
= α−

(
K

T

)2 (
G′p(χ

α
p )χαp

)
B̄(τ) + o

(
K2

T 2
+

1

K

)
+O

(
1

T

)
, (41)
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as K → ∞, where χαp is (1 − α)-quantile of χ2
p random variable. Thus, using the fixed-K critical value

can remove the variance effect under H0, which indicates that the fixed-K critical value is second-order

correct. Also, we can obtain the second order approximation of the null rejection probability in (38) for

HAR-inference:

eI(K) := α−
(
K

T

)2 (
G′p(χ

α
p )χαp

)
B̄(τ).

To approximate the power of HAR inference, under H1(δ2) in (36), it can be shown that

P

((
K − p+ 1

K

)
W̃T (τ) > pFαp,K−p+1

)
= 1−Gp,δ2

(
χαp
)
−
(
K

T

)2 (
G′p,δ2(χ

α
p )χαp

)
B̄(τ)

−
(χαp )2

K
Q(p, δ2) + o

(
K2

T 2
+

1

K

)
+O

(
1

n

)
,

where Qp,δ2(χ
α
p ) = G′′p,δ2(χ

α
p )− (G

′′
p(χαp )/G′p(χ

α
p ))G′p,δ2(χ

α
p ). Note that the expansions exactly coincide with

(41) under the null when δ = 0. Using the relationship Q(p, δ2) = (δ2/2)(G′(p+2),δ2(χ
α
p )/χαp ), as shown in

Sun (2011), the result leads us to approximate the power probability in (37):

1− Type II error ' 1− eII(δ2,K);

eII(δ
2,K) := Gp,δ2

(
χαp
)

+

(
K

T

)2 (
G′p,δ2(χ

α
p )χαp

)
B̄(τ) +

δ2

2K

(
G′(p+2),δ2(χ

α
p )χαp

)
.

The approximated quantities for Type I and Type II errors directly represent size and power probabilities

of HAR-inference. Also, they allow us to provide a feasible solution of the optimal testing problem in

(37) and (38). Let κ denote a user-chosen tuning parameter value such that κ > 1. We then solve the

constrained minimization problem, which takes the same form as in Sun (2011):

K̃∗ = arg min
K

eII(δ
2,K) such that eI(K) ≤ κα.

Here, introducing the tuning parameter κ reflects that the approximated probability can have some error

to satisfy the NP-principle’s nominal level constraint in (38). The constrained minimization problem yields

the following explicit form of the solution:

K̃∗ =


[
δ2G′

(p+2),δ2
(χαp )

4G′
p,δ2

(χαp )|B̄(τ)|

] 1
3

· T 2
3 , if B̄(τ) > 0;[

(κ−1)α
G′p(χαp )χαp |B̄(τ)|

] 1
2 · T, if B̄(τ) < 0

. (42)

and, the testing optimal K∗ is formulated as

K∗ = max
{⌈
K̃∗
⌉
, p+ 4

}
,

so that the asymptotic distribution pFp,K∗−p+1 has a finite first moment. The practical application of

the optimal K∗, a requires values for several parameters, including δ2, π, and B̄. Readers are referred to

subsection 8.1 of the Appendix, where we provide a data-driven formula for these values.
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6 Monte Carlo Evidence

In this section, we perform Monte Carlo simulations to validate our theoretical findings and confirm the

favorable finite-sample performance of the QR-HAR inference method.

6.1 Comparison with HAR conditional mean regression

We consider the following DGP, considered in Sun (2014a):

yt = α+ β1x1,t + β2x2,t + β3x3,t + εt for t ∈ {1, . . . , T}, (43)

where xj,t and εt follow AR(1) processes,

xj,t = ρxxj,t−1 + ej,t and εt = ρεt−1 + e0,t (44)

for j ∈ {1, 2, 3}, ρx = 0.75, ρ ∈ {0.25, 0.50, 0.75, 0.90}, and (e1,t, ..., ed,t)
′ i.i.d.∼ N(0,

√
1− ρ2

x · Id). For the

innovation term e0,t
i.i.d.∼ Fe, we choose its probability distribution Fe to have a zero mean and unit variance,

with distributions specified as:

Fe ∼ N(0, 1) or Fe ∼
χ2(1)− 1√

2
or Fe ∼

T3√
3
. (45)

The initial value ε0 is drawn from its unconditional distribution, e.g., N(0, 1/(1−ρ2)) with Fe ∼ N(0, 1).The

unknown parameter vector is θ = (α, β1, β2, β3)′ ∈ Rd with d = 4, and is set to be (0, 1, 1, 1)′. Since the

conditionally homoskedastic et is independent of xj,t, the true parameter for the QR coeffi cient vector,

(β1(τ), β2(τ), β3(τ))′, is equal to (1, 1, 1)′ for all quantile levels τ ∈ (0, 1). The null hypotheses of interest

are

H01 : β1(τ) = 1, (46)

H02 : β1(τ) = β2(τ) = 1, (47)

H03 : β1(τ) = β2(τ) = β3(τ) = 1, (48)

where the numbers of joint hypotheses are p = 1, 2, and 3, respectively. When d = 2 and Fv ∼ N(0, (1−ρ2)),

our simulation designs in (43) and (44) are equivalent to the DGP in Galvao and Yoon (2024), which

examined the performance of the QR-HAC t statistic using standard normal critical value. Our designs

are also comparable to the AR(2) designs in Gregory et al. (2018) which employ the same regression error

specifications outlined in (45). Our simulation designs, including hypothesis testing (46)—(48), encompass

multivariate Wald inference for both QR-HAC and QR-HAR approaches.

We examine the empirical rejection probability (ERP) of four types of Wald inferences for testing (46)—

(48), with the nominal significance level α set at 5%. The first Wald inference, denoted as HAR-M, utilizes
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the existing HAR-Wald inference method, which employs ordinary least square (OLS) estimates with OS

LRV estimates and t and F critical values, as described in Müller (2007) and Sun (2013). It applies the

smoothing parameter K∗, determined by minimizing the testing-oriented selection rule, as outlined in Ye

and Sun (2018). The next two procedures, denoted as QR-HAC and QR-HAR, are based on QR estimates at

τ = 0.50, (i.e., median regression) and implement HAC- and HAR-based QR-Wald inference, respectively.

Specifically, QR-HAC employs kernel LRV estimates using the Bartlett kernel and chi-square critical values

derived from conventional increasing-smoothing (or small-b) asymptotics. The smoothing parameter b∗ is

selected by minimizing the asymptotic mean squared error (AMSE) using the optimal formula provided in

Galvao and Yoon (2024). QR-HAR is based on the OS-LRV estimate and the fixed-smoothing asymptotic

result in Theorem 2-(c), which uses (scaled) F -critical values. The smoothing parameter K∗ is obtained

using the testing-oriented rule with the data-dependent formulation specified in the previous section.

The final method, denoted as SETBB, employs the smooth extended tapered block bootstrap approach

developed by Gregory et al. (2018). It is designed to improve inference in time series QR by extending

the tapered moving block bootstrap method, incorporating smoothing for both data blocks and individual

observations. Implementing SETBB requires two smoothing parameters: one for individual data and one

for block length. For the smoothing parameter for individual data, we use the formula recommended in

Section 4 of Gregory et al. (2018). For the block length, we set it as b∗T, where b∗ is the AMSE-optimal

smoothing parameter in QR-HAC. We consider sample size T ∈ {200, 400, 800}, with 10, 000 replications

in all Monte Carlo simulations. The results are provided in Tables 1—3 for the null hypotheses (46)—(48),

with p ∈ {1, 2, 3} and error distributions specified in (45).

Our results first indicate that Wald inferences for both conditional mean regression (OLS) and QR

perform well when the degree of time series correlation ρ is low, i.e., ρ = 0.25, as their ERPs are close to

the nominal level 5%. For example, Table 1 for normal errors and ρ = 0.25 shows that ERPs for HAR-M,

QR-HAC, and QR-HAR with T = 200 and p = 1 are 7.2%, 8.1%, and 7%, respectively. The size distortions

reduce to 6.9%, 7.1%, and 6.3%, as the sample size increase to T = 400. Not surprisingly, the ERPs

for OLS-based HAR-M increase when the errors are non-Gaussian, while the ERPs for QR-based inference

are less sensitive. For instance, results in Table 1—3 show that the ERP for HAR-M with p = 3 and

ρ = 0.25 increases from 8.6% to 10.3% and 10.6% when the error distributions shift to chi-square and T3,

respectively. On the other hand, our results show that the ERPs for QR-HAR inference remain steady,

ranging from 8.9% to 9.8% across all error specifications.

Tables 1—3 also indicate that the size distortions of OLS-based Wald inference, HAR-M, substantially

increase, as ρ increase. Specifically, Table 1 for normal errors shows that the ERPs for HAR-M with T = 200

and p = 1 increases from 7.2% to 14.1% as ρ increases from 0.250 to 0.50, and further increase to 56.3%
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when ρ becomes 0.90. One reason for this is that the variance of innovation, var(εt) = 1/(1−ρ2) approaches

to infinity as ρ increases to one. Thus, the time series correlation problem in the HAR conditional mean

regression also affects the larger (unbounded) second moment of the underlying moment process in our

DGPs. In contrast, our results show that QR-based Wald inference have substantially lower size distortions

than HAR-M when ρ increases. For instance, ERPs of QR-HAC are around 9.5%—13.4% and those for QR-HAR

are around 7.3%—9.2% for T = 200, ρ ∈ {0.50, 0.75, 0.90}, and p = 1 in Table 1. Also, Tables 1—3 indicate

that, for a given ρ value, the ERPs of QR-HAC and QR-HAR approach the nominal level of 5%, as sample

size grows.

While QR-based Wald inference substantially reduces the finite-sample size distortions observed in

OLS-based Wald inference, our results indicate that the HAC-based QR Wald inference, QR-HAC, can still

suffer from severe size distortions when the degree of temporal dependence is high, e.g., ρ = 0.90. We also

observe that size distortions become more serious as the number of testing parameters p increases. A key

reason for the failure of QR-HAC is that the non-parametric LRV estimate exhibits high variation in finite

samples, but these variations are not accounted for in the chi-square critical value used for QR-HAC. This

result naturally motivates the implementation of the HAR-based QR Wald inference, QR-HAR, where its

OS-LRV estimate utilizes standard (scaled) F critical values and a testing-oriented smoothing parameter

choice, rather than the AMSE-optimal rule.

In Tables 1—3, we find that the size distortions of QR-HAC are reduced in QR-HAR, especially for sample

sizes T ranging 200 and 400. For example, Table 1 with p = 1 and T = 200 reports that the ERPs of

QR-HAR reduce those of QR-HAC from 8.1%—9.5% to 7.0%—7.3% at ρ ∈ {0.25, 0.50}, and 11.9%—13.4% to

8.9—9.2% at ρ ∈ {0.75, 0.90}. The reductions in size distortions become more pronounced as ρ increases, as

shown in Table 1, as well as Tables 2 and 3 for other DGPs. Additionally, results with different values of

p show that finite-sample improvements also increase when the number of testing hypotheses p increases,

consistent with existing HAR literature, such as Sun (2011, 2013) and Hwang and Sun (2018).

In summary, the HAR-QR approach significantly reduces the empirical size distortions of the HAR

conditional mean regression approach. Its finite-sample performance remains robust to the time series per-

sistence of the regression error, even when the error distribution is non-Gaussian, asymmetric, or contains

outliers. The HAR-based QR Wald inference not only addresses serial correlation but also mitigates the

effects of heavy-tailed distributions (unbounded second moments), which negatively affect the performance

of the HAR conditional mean regression. Additionally, our QR-HAR approach, based on the asymptotic

F-test with a data-driven, testing-optimal smoothing parameter, performs well in finite samples, reducing

the ERPs of the conventional chi-square test in the QR-HAC approach across various DGPs.

Lastly, we report the results of the bootstrap approach in Gregory et al. (2018), SETBB, as presented
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in Tables 1—3. The results indicate that SETBB can serve as an alternative to HAR inference, as it yields

conservative finite-sample sizes when the degree of serial correlation is moderate. For example, Table 1

with p = 1 and T = 200 shows that the ERPs of SETBB range from 2.0% to 4.0% for ρ ∈ {0.25, 0.50}.

However, our findings indicate that the size distortions of SETBB are larger than those of the QR-HAR

approach when the degree of serial correlation is high, e.g., ρ ∈ {0.75, 0.90}, with ERPs ranging from

9.1% to 17.9% with p = 1 and T = 200. These numerical findings suggest that QR-HAR Wald inference,

QR-HAR, is comparable to the bootstrap approach in Gregory et al. (2018), SETBB, when serial correlation

is moderate and outperforms the bootstrap approach when serial correlation is strong. Importantly, our

approach employs studentized Wald inference, whereas SETBB is limited to unstudentized statistics, as its

bootstrap critical values are designed for unstudentized statistics.

6.2 Performance under heteroskedastic error variances

Our next simulation designs considers the same DGPs for the regressors (x1,t, x2,t, x3,t)
′ and errors εt as in

(44), but replaces (43) with

yt = α+ β1x1,t + β2x2,t + β3x3,t + (η0 + η1x1,t)εt for t ∈ {1, . . . , T}, (49)

where η0 = 2 and η1 = 0.5. The innovation term e0,t from (44) follows the distribution e0,t ∼ N(0,
√

1− ρ2
e).

In this case, the QR coeffi cient vector is given by (β1(τ), β2(τ), β3(τ))′ = (β1 + η1Φ−1(τ), β2, β3)′, where

Φ(·) is the CDF of standard normal random variable, so the τ -QR coeffi cient for x1,t differs from that of

the conditional mean regression when τ 6= 0.5. The null hypotheses of interest are

H01 : β1(τ) = β1 + η1Φ−1(τ), (50)

H02 : β1(τ) = β1 + η1Φ−1(τ) and β2(τ) = β2, (51)

for p = 1, 2, respectively, and (β1, β2, β3)′ = (1, 1, 1)′.

Similar to the previous subsection, we examine the empirical rejection probability (ERP) of inference

using QR-HAC, QR-HAR, and SETBB, but exclude HAR-M as the inference cannot test the heterogeneous

quantile effects in (50) and (51) for τ 6= 0.50. The results are reported in Tables 4 and 5. They indicate

that the HAC inference in QR, QR-HAC, can achieve ERPs close to the nominal level for moderate levels

of serial correlation with a large sample size, e.g., ρ ∈ {0.25, 0.50} and T = 800, when testing a single

hypothesis (p = 1). However, there are significant size distortions for QR-HAC, especially with moderate

sample sizes and a higher degree of persistence, such as T = 200 with ρ ∈ {0.75, 0.90}. The HAR inference

in QR, QR-HAR, can reduce the size distortions observed in QR-HAC for these cases. For example, when

ρ ∈ {0.75, 0.90} and n = 400 with τ = 0.75, Table 4 that the ERPs for QR-HAC, ranging from 11.4% to
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15.2%, are reduced to 9.4%—10.4% by QR-HAR. Similar to the previous analysis with τ = 0.50, Tables 4

and 5 indicate that the extent of finite-sample improvements increases when multiple hypotheses are tested

in Wald inference. The performance of the bootstrap approach, SETBB, exhibits similar findings as in the

previous section. Its ERPs are most accurate in size when there is a moderate degree of serial dependence,

such as ρ ∈ {0.75, 0.90}. However, SETBB shows more size distortions than QR-HAR when ρ = 0.90 and

τ = 0.75, as shown in Table4.

Finally, we note that both Wald inference methods, QR-HAC and QR-HAR, are subject to size dis-

tortions when the quantile level τ focuses on the tails, such as τ = 0.90. However, the magnitude of these

distortions decreases as the sample size increases. We also observe that the bootstrap approach, SETBB,

is less sensitive when making QR inference at the tails and provides more accurate sizes than QR-Wald

inference. In contrast to SETBB, the primary source of size distortions in QR-Wald-inference arises from

finite-sample variability in the nonparametric estimation of the QR Hessian matrix in (52). Employing

resampling methods in QR can provide more accurate estimates of asymptotic variance, thereby enhancing

the QR-HAR Wald inference proposed in this paper. We leave this for future research.

7 Conclusion

In this paper, we establish an alternative fixed-smoothing asymptotic theory for quantile regression (QR) in

time series under unknown form of weak temporal dependence. We show that the long-run variance (LRV)

estimate in QR weakly converges to a random matrix scaled by the true LRV, and the corresponding QR-

Wald statistics weakly converge to non-standard limits. Building on this result, we extend HAR inference

in the conditional mean regression models provided by Sun (2014a & b) and Lazarus et al. (2021) to

QR setting. Additionally, we show that the Wald and t inferences using orthonormal series LRV (OS-

LRV) admit the standard F and t asymptotic critical values, which do not require any simulations for

non-standard critical values in practice.

Regarding the choice of the smoothing parameter in OS-LRV, we develop an optimal smoothing selec-

tion rule that addresses the central concern of hypothesis testing, following the classical Neyman-Pearson

principle. Based on approximated Type I and Type II errors, we provide a closed-form formula for the

testing-optimal smoothing parameter.

Our simulations show that the asymptotic F -test, with a data-driven, testing-optimal smoothing para-

meter, performs well in finite samples, reducing the size distortions of both OLS-based HARWald inference

and HAC Wald inference in QR across various data generation processes. The finite-sample improvements

of our QR-HAR approach are more pronounced when the sample size is moderate, the degree of tem-
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poral dependence increases, and the number of null hypothesis parameters grows. Given its convenience

and improved finite-sample performance, we recommend using OS-LRV in HAR inference, along with our

data-driven smoothing parameter selection rule, for the QR setting.
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8 Appendix of tables, formulas, and proofs

8.1 Data-driven implementation of QR-HAR inference

In the formula for the testing-oriented smoothing parameter (42), the function G′p,δ2(·) is the pdf of the

non-central χ2-random variable with degrees of freedom p, and the noncentrality parameter δ2. It can be

written as

G′p,δ2(x) =
1

2
exp

(
−(x+ δ2)

2

)
·
( x
δ2

) p−2
4
I(p/2−1)

(√
δ2x
)
,

where Iν(s) = (s/2)ν
∑∞

j=0(s2/4)j/(j!Γ(ν + j+ 1)) with Γ(z) =
∫∞

0 tz−1e−tdt is a modified Bessel function

of the first kind. Given χαp , the value of G
′
p,δ2(χ

α
p ) can be computed using popular programming software

such as MATLAB and R, which have functions ncx2pdf and dchisq for this purpose, respectively. Using

(42). For the tuning parameter δ2, according to its definition in (36), the value of δ2 indicates the degree

to which the true parameter Rβ0(τ) deviates from the original null hypothesis H0 : Rβ0(τ) = r under the

following alternative hypothesis:

H1(δ2) : Rβ0(τ) = r +
(RΣ(τ)R′)1/2u√

T
,

where ||u||2 = δ2. In principle, δ2 can be chosen to reflect the scientific interest or economic significance

implied by the hypothesis test. When the information is not available, however, we can set a value to

satisfy the rule P (χp(δ
2) > χ1−α

p ) = 0.75, as suggested by Sun (2011, 2014). Note that this value of δ2

corresponds to the point at which the infeasible χ2-test for QR, using the known asymptotic covariance

matrix RΣ(τ)R′, achieves 75% of the local asymptotic power.

For the parameter κ, which is greater than one, the value reflects the tolerance level for the deviation

of the second-order approximated type I error probability eI(K) from the nominal level α. For example,

if κ = 1.10 and the nominal level is 5% (i.e., α = 0.05), the optimal HAR inference aims to control the

type I error such that it does not exceed 5.5%. We may allow κ to depend on the sample size n. For larger

sample sizes, e.g., T is more than 500, κ can be set to smaller values such as 1.05. We select a smaller value

of κ than what is recommended for the conditional mean regression case, e.g., Ye and Sun (2013) with

κ = 1.15, because the actual QR-HAR statistic is expected to have more approximation errors, leading to

a greater deviation from the Gaussian location benchmark model.

The feasible estimation of the optimal smoothing parameter K∗ requires an estimation of the p × p

matrix B̄ specified in (40), which includes estimations of D(τ),Ω(τ), and B(τ). For D̂(τ), the consistent

Powell estimator takes the form D(τ):

D̂(τ) =
1

T lT

T∑
t=1

K

(
yt −X ′tβ̂(τ)

lT

)
XtX

′
t, (52)
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where K(u) := 2−11(|u| ≤ 1) is the uniform kernel. Regarding the choice of bandwidth parameter lT ,

our Monte Carlo simulations indicate that the bandwidth rules proposed by Hall and Sheather (1988)

and Bofinger (1975) perform well even in the presence of dependent errors. This aligns with the findings

of Galvao and Yoon (2024) in their investigation of the QR-HAC approach. The formulas for the Hall-

Sheather and Bofinger rules, as provided in Koenker (2005), can be specified in the Gaussian case as

follows:

l̂T = T−1/5 ·
{

4.5ψ4(Φ−1(τ))

(2Φ−1(τ)2 + 1)2

}1/5

;

l̂T = T−1/3 ·
{
z2/3
α

(
1.5ψ2(τ)

2(ψ′(τ)/ψ(τ))2 + (ψ′(τ)/ψ(τ)− ψ′′(τ)/ψ(τ))

)1/3
}
,

respectively, where ψ(·) is the standard normal probability density function, and zα denotes the (1 − α)

quantile for a standard normal random variable. These data-dependent estimates of D̂(τ) can be easily

executed using the R package quantreg and were implemented in our Monte Carlo simulations.

For values of Ω(τ) and B(τ), Phillips (2005), Sun (2013), and Hwang and Valdés (2022) propose

using VAR(1) approximation of the regression score process, i.e., Zt = AzZt−1 + wzt for A ∈ Rd×d and

E[wztw
′
zt] = Υ, and utilize their implied parametric forms given below:

Ωvar(τ) = (Id −Az)−1Υ(Id −A′z)−1; (53)

Bvar(τ) = −π
2

6
(Id −Az)−3

(
AzΥ +A2

zΥA
′
z +A2

zΥ− 6AzΥA
′
z (54)

+Υ(A′z)
2 +AzΥ(A′z)

2 + ΥA′z
)

(Id −A′z)−3.

The VAR(1) coeffi cient Az can be directly estimated using the estimated QR-score process Ẑt = Xtm̂t with

m̂t := τ − 1(êt ≤ 0). However, as noted by Galvao and Yoon (2024), this procedure can induce substantial

finite-sample biases in the autoregressive coeffi cients in Âz, which is driven by the estimated non-smooth

component m̂t := (τ − 1(êt ≤ 0)).

To avoid finite sample problems in m̂t, we follow the alternative formulation of Âz of Galvao and

Yoon (2024) and extend their approach for the single-dimensional case to the general multivariate case,

with Az ∈ Rd×d. The alternative procedure assumes that the components Xt and et follow VAR(1) and

Gaussian-AR(1) processes, respectively. The estimates for the VAR coeffi cient, Âx, and the AR(1) co-

effi cient for m̂t, φ̂(τ), are estimated separately. The former can be straightforwardly formulated by Âx

= (
∑T

t=1XtX
′
t−1)(

∑T
t=1Xt−1X

′
t−1)−1. For the latter component, recall that (et, et−1)′ is assumed to follow

a bivariate normal distribution. The implied AR(1) coeffi cient for m̂t can be formulated as below: (i)

Compute a normalized ĕt = êt/se, where êt = yt − X ′tβ̂(τ), and se is the sample standard deviation for

{êt}Tt=1. (ii) Compute ρ̂e =
∑T

t=2(ĕt− ē+)(ĕt−1− ē−)/
∑T

t=2(ĕt−1− ē−)2, where ē+ = (T −1)−1
∑T

t=2 ĕt and
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ē− = (T − 1)−1
∑T−1

t=1 ĕt. (iii) Compute q̂(τ), the τ -quantile of {ĕt}Tt=1 (iv) Obtain the alternative AR(1)

coeffi cient estimator:

φ̂(τ) =
Φ2 [(0, 0)′;µ, V ]− τ2

τ(1− τ)
with µ =

 −q̂(τ)

−q̂(τ)

 and V =

 1 ρ̂e

ρ̂e 1

 ,

where Φ2(·;µ, V ) : R2 → R denotes the CDF of bivariate normal random variable N(µ, V ).

With Âx and φ̂(τ), we can obtain the alternative estimates for the VAR(1) coeffi cient Âz = Âxφ̂(τ).

We can then derive the implied parametric plugged-in estimates Ω̂var(τ) and B̂var(τ) by replacing Az and

Υ in (53) and (54) with Âz = Âxφ̂(τ), and Υ̂ = T−1
∑T

t=1 ŵztŵ
′
zt with ŵzt = Ẑt − ÂzẐt−1, respectively.
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8.2 Tables in Section 6

Table 1: Empirical rejection ratios for τ = 0.50 with Normal QR errors and α = 0.05

τ= 0.50 and Fe∼ N(0, 1) for innovation in (45)

p = 1 p = 2 p = 3

T ρ HAR-M QR-HAC QR-HAR SETBB HAR-M QR-HAC QR-HAR SETBB HAR-M QR-HAC QR-HAR SETBB

200 0.250 0.072 0.081 0.070 0.020 0.074 0.097 0.081 0.014 0.086 0.114 0.089 0.010

200 0.500 0.141 0.095 0.073 0.040 0.183 0.123 0.091 0.030 0.206 0.152 0.109 0.025

200 0.750 0.347 0.119 0.089 0.091 0.464 0.157 0.116 0.074 0.537 0.186 0.138 0.075

200 0.900 0.563 0.134 0.092 0.179 0.743 0.176 0.110 0.179 0.686 0.208 0.127 0.198

400 0.250 0.069 0.071 0.063 0.020 0.076 0.076 0.066 0.013 0.079 0.089 0.073 0.012

400 0.500 0.139 0.078 0.064 0.036 0.185 0.090 0.069 0.025 0.215 0.101 0.085 0.025

400 0.750 0.370 0.091 0.070 0.081 0.517 0.106 0.082 0.064 0.613 0.132 0.095 0.070

400 0.900 0.649 0.100 0.075 0.155 0.809 0.119 0.084 0.164 0.844 0.143 0.094 0.189

800 0.250 0.074 0.063 0.058 0.026 0.086 0.072 0.063 0.019 0.090 0.075 0.063 0.016

800 0.500 0.147 0.079 0.067 0.043 0.203 0.083 0.069 0.030 0.232 0.086 0.077 0.029

800 0.750 0.384 0.084 0.068 0.079 0.539 0.095 0.074 0.067 0.649 0.104 0.078 0.066

800 0.900 0.679 0.087 0.069 0.138 0.871 0.102 0.080 0.150 0.933 0.110 0.091 0.167

Note: HAR-M reports empirical null rejection probabilities for conditional mean HAR-Wald inference using OLS

estimates with F -criticalvalues. It employs the smoothing parameter K∗, which minimizes the testing-oriented

selection rule according to the formula provided in Ye and Sun (2018). QR-HAC implements the HAC-based QR-

Wald inference with kernel LRV estimates, employing the Bartlett kernel and chi-square critical values derived

from conventional increasing-smoothing (or small-b) asymptotics. It employs the smoothing parameter b∗, which

minimizes the asymptotic mean squared error (AMSE) according to the formula provided in Galvao and Yoon (2024).

QR-HAR is based on the OS-LRV estimate, using the F -criticalvalues. The smoothing parameter K∗for WHAR is

determined using a testing-oriented rule with the data-dependent formulation specified in Section 5. SETBB refers

to bootstrap-based inference (smooth extended tapered block bootstrap) for QR, proposed by Gregory et al. (2018).

The nominal level of test α is set at 5%, with 5,000 replications.
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Table 2: Empirical rejection ratios for τ = 0.50 with Chi-square QR errors and α = 0.05

τ= 0.50 and Fe∼ (χ2(1)− 1)/
√
2 for innovation in (45)

p = 1 p = 2 p = 3

n ρ HAR-M QR-HAC QR-HAR SETBB HAR-M QR-HAC QR-HAR SETBB HAR-M QR-HAC QR-HAR SETBB

200 0.250 0.064 0.085 0.074 0.033 0.085 0.103 0.085 0.020 0.103 0.119 0.098 0.016

200 0.500 0.121 0.097 0.075 0.047 0.167 0.127 0.094 0.031 0.200 0.154 0.114 0.027

200 0.750 0.320 0.123 0.095 0.088 0.428 0.163 0.117 0.065 0.482 0.197 0.142 0.068

200 0.900 0.549 0.132 0.087 0.165 0.727 0.180 0.110 0.169 0.660 0.224 0.127 0.189

400 0.250 0.066 0.079 0.069 0.057 0.080 0.090 0.076 0.040 0.101 0.101 0.084 0.033

400 0.500 0.135 0.090 0.076 0.061 0.192 0.102 0.081 0.045 0.236 0.127 0.106 0.040

400 0.750 0.363 0.100 0.076 0.093 0.504 0.128 0.099 0.073 0.601 0.152 0.110 0.071

400 0.900 0.627 0.112 0.084 0.153 0.795 0.136 0.092 0.151 0.787 0.163 0.111 0.172

800 0.250 0.074 0.068 0.060 0.060 0.087 0.073 0.061 0.048 0.109 0.082 0.070 0.048

800 0.500 0.149 0.072 0.063 0.060 0.199 0.085 0.070 0.051 0.241 0.099 0.092 0.048

800 0.750 0.388 0.088 0.071 0.080 0.542 0.106 0.091 0.075 0.652 0.121 0.088 0.074

800 0.900 0.679 0.093 0.073 0.135 0.855 0.110 0.087 0.139 0.905 0.125 0.102 0.154

See footnote in Table 1.

Table 3: Empirical rejection ratios for τ = 0.50 withT (3) QR errors and α = 0.05

τ= 0.50 and Fe∼ T 3/
√
3 for innovation in (45)

p = 1 p = 2 p = 3

T ρ HAR-M QR-HAC QR-HAR SETBB HAR-M QR-HAC QR-HAR SETBB HAR-M QR-HAC QR-HAR SETBB

200 0.250 0.057 0.082 0.071 0.012 0.076 0.097 0.075 0.006 0.106 0.111 0.087 0.005

200 0.500 0.109 0.098 0.079 0.030 0.146 0.121 0.088 0.018 0.186 0.146 0.108 0.012

200 0.750 0.295 0.125 0.092 0.073 0.384 0.158 0.118 0.051 0.437 0.195 0.140 0.044

200 0.900 0.534 0.139 0.084 0.156 0.707 0.178 0.105 0.135 0.634 0.213 0.122 0.151

400 0.250 0.059 0.071 0.062 0.017 0.082 0.079 0.070 0.010 0.110 0.088 0.073 0.007

400 0.500 0.127 0.079 0.066 0.034 0.166 0.097 0.073 0.023 0.221 0.107 0.085 0.019

400 0.750 0.332 0.095 0.072 0.064 0.463 0.120 0.090 0.055 0.554 0.141 0.103 0.052

400 0.900 0.588 0.104 0.073 0.129 0.762 0.131 0.089 0.123 0.744 0.154 0.100 0.125

800 0.250 0.067 0.069 0.061 0.022 0.085 0.076 0.066 0.014 0.106 0.076 0.065 0.011

800 0.500 0.135 0.080 0.068 0.038 0.188 0.086 0.073 0.026 0.230 0.098 0.087 0.024

800 0.750 0.349 0.081 0.062 0.062 0.506 0.105 0.091 0.058 0.606 0.108 0.087 0.052

800 0.900 0.635 0.086 0.068 0.117 0.804 0.104 0.080 0.118 0.844 0.112 0.096 0.123

See footnote in Table 1.
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Table 4: Empirical rejection ratios for τ ∈ {0.75, 0.90} with p = 1 and α = 0.05

DGP in (49) with p = 1

τ= 0.75 τ= 0.90

T ρ QR-HAC QR-HAR SETBB QR-HAC QR-HAR SETBB

200 0.250 0.086 0.076 0.027 0.109 0.102 0.025

200 0.500 0.113 0.098 0.051 0.129 0.116 0.049

200 0.750 0.141 0.108 0.091 0.178 0.152 0.087

200 0.900 0.192 0.136 0.165 0.246 0.194 0.146

400 0.250 0.081 0.074 0.022 0.094 0.087 0.019

400 0.500 0.087 0.077 0.039 0.115 0.106 0.031

400 0.750 0.114 0.094 0.078 0.139 0.120 0.069

400 0.900 0.152 0.104 0.131 0.185 0.156 0.128

800 0.250 0.078 0.069 0.023 0.079 0.076 0.015

800 0.500 0.084 0.086 0.036 0.092 0.087 0.026

800 0.750 0.092 0.080 0.060 0.105 0.094 0.050

800 0.900 0.114 0.089 0.101 0.139 0.117 0.101

See footnote in Table 1.

Table 5: Empirical rejection ratios for τ ∈ {0.75, 0.90} with p = 2 and α = 0.05

DGP in (49) with p = 2

τ= 0.75 τ= 0.90

T ρ QR-HAC QR-HAR SETBB QR-HAC QR-HAR SETBB

200 0.250 0.114 0.096 0.018 0.160 0.147 0.014

200 0.500 0.148 0.121 0.039 0.198 0.179 0.035

200 0.750 0.198 0.154 0.084 0.270 0.236 0.069

200 0.900 0.257 0.179 0.145 0.351 0.286 0.140

400 0.250 0.102 0.089 0.016 0.139 0.129 0.016

400 0.500 0.121 0.107 0.032 0.168 0.155 0.028

400 0.750 0.153 0.130 0.069 0.208 0.189 0.060

400 0.900 0.191 0.147 0.119 0.271 0.235 0.113

800 0.250 0.089 0.078 0.017 0.106 0.102 0.009

800 0.500 0.105 0.105 0.032 0.127 0.122 0.021

800 0.750 0.120 0.107 0.056 0.148 0.140 0.041

800 0.900 0.143 0.117 0.102 0.197 0.178 0.093

See footnote in Table 1.
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8.3 Technical lemmas

The following lemma is a version of Lemma C.2 in Galvao and Kato (2016) which states a property of

strong mixing process {Vt} which provides upper bound for covariance between Vt and Vt+s for any fixed

integer s. As noted in Galvao and Yoon (2024), the original result is attributed to Yoshihara (1976), who

assumed β-mixing, but this result can be applied to the case of α-mixing in Lemma 1 below.

Lemma 1. Let {Vt} be with α-mixing coeffi cient α[s] such that E[Vt] = E[Vt+s] = 0, and for some positive

constants δ and M such that

E[|Vt|1+δ]E[|Vt+s|1+δ] ≤M and E[|VtVt+s|1+δ] ≤M.

Then, we have that

|cov(Vt, Vt+s)| ≤ 4M1/(1+δ)α[s]δ/(1+δ).

The next lemma provides a slight modification of the exponential-type inequality result from equation

(2.1) in Theorem 1 of Merlevéde, Peligrad, Rio (2009). The inequality in Lemma 2 extends Bernstein’s

inequality for i.i.d. data to time series which is characterized by α-mixing dependence.

Lemma 2. Let {Ut}Tt=1 be a sequence of zero-mean stationary random variables that satisfy

α[k] ≤ exp(−a0k)

for a certain constant a0 > 0. Also, assume that there exists a positive constant B that satisfies max1≤t≤T ||Ut|| ≤

B. Then, there exists a positive constant c1 depending only on a0 such that the following inequality holds

for all x ≥ 0:

P

(∣∣∣∣∣
T∑
t=1

Ut

∣∣∣∣∣ ≥ x
)
≤ exp

(
− c1x

2

ν2 +B2 + xB(log n)2

)
,

for suffi ciently large T ≥ 2, where ν2 = var(
∑T

t=1 Ut).

Our final technical result in this subsection shows that the CLT assumption in Assumption 5 can be

validated under certain primitive conditions, similar to those in Jenish and Prucha (2009). For simplicity

of exposition, we focus on the marginal weak convergence in the CLT of {Φk (t/T )Zt}Tt=1 for a scalar time

series Zt, as the joint weak convergence over k ∈ {1, . . . , J} and the multivariate Zt case can be established

using the Cramér-Wold device. For a generic random variable V, we denote the upper quantile function

LV (·) : (0, 1)→ [0,∞) as

LV (u) = inf{x ∈ R : P (V > x) ≤ u}.

Additionally, we define the inverse function of the α-mixing coeffi cient αinv[u] : (0, 1)→ N ∪ {0}, as:

αinv[u] = max{s ≥ 0 : α[s] > u}.

37



Lemma 3. Suppose that:

i) There exists an array of positive real constants {ct,T }Tt=1 such that

lim
M→∞

sup
T∈N

sup
1≤t≤T

E

[∣∣∣∣Φk

(
t

T

)(
Zt
ct,T

)∣∣∣∣2 1

(∣∣∣∣Φk

(
t

T

)(
Zt
ct,T

)∣∣∣∣ > M

)]
= 0;

lim inf
T→∞

{
1

T

(
ΩT,k

max1≤t≤T ct,T

)}
> 0,

where ΩT,k(τ) := var(T−1/2
∑T

t=1 Φk(t/T )Zt).

ii) The sequence {Φk (t/T )Zt}Tt=1 is α-mixing and satisfies that

lim
M→∞

lim
T→∞

sup
1≤t≤T

∫ 1

0
α2
inv[u]

(
L|Φk(t/T )Zt|1(Φk(t/T )Zt|>C)

)2
du = 0;

∞∑
j=1

jα[j] < 0 and α(j) = O(j−2−ε) for some ε > 0.

If Φk (·) is continuously differentiable such that
∫ 1

0 Φ2
k(r)dr = 1, and if

∑T
j=1 j|E[ZtZt−j ]| <∞, then

1√
T

T∑
t=1

Φk

(
t

T

)
Zt

d→ N (0,Ω(τ)) ,

as T →∞.

8.4 Technical results for the proofs of main results

We begin by presenting some technical results to establish (18) for the empirical process Gk,T (b). Define

the following versions of the empirical processes:

Ǧk,T (b) :=
1√
T

T∑
t=1

Φk

(
t

T

)
(Zt(b)− E[Zt(b)|Xt]) ;

G̃k,T (b) :=
1√
T

T∑
t=1

Φk

(
t

T

)
(E[Zt(b)|XT ]− E[Zt(b)]) .

Lemma 4 below shows that

sup
b∈NεT (β0(τ))

||Ǧk,T (b)− Ǧk,T (β0(τ))|| = op(1) and sup
b∈NεT (β0(τ))

||G̃k,T (b)− G̃k,T (β0(τ))|| = op(1),

from which the result in (18) follows by the triangle inequality.

Lemma 4. Suppose Assumptions 1—4 hold, and fix any positive constant C0 for εT = C0T
−1/2 in NεT (β0(τ)).

Then, as n grows to infinity, we have that

sup
b∈NεT (β0(τ))

||Ǧk,T (b)− Ǧk,T (β0(τ))|| = Op

(
log n

n1/4

)
; (55)

sup
b∈NεT (β0(τ))

||G̃k,T (b)− G̃k,T (β0(τ))|| = Op

(
(log n)3

n3/10

)
, (56)

hold uniformly over k ∈ {0}∪N.
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Proof of Lemma 4. Without loss of generality, we let Xi be single-dimensional, i.e., d = 1, whenever it is

convenient. Also, we assume that β0(τ) = 0 without loss of generality. We first prove the result in (55).

Define

ϕt(b) :=
{

1(et ≤ 0)− 1(et ≤ X ′tb)
}
−
{
E[1(et ≤ 0)|Xt]− E[1(et ≤ X ′tb)|Xt])

}
;

ψt(b) := ϕt(b)Xt.

Then, it is not diffi cult to check that E[Φk(t/T )ψt(b)] = 0 for any b ∈ NεT (β0(τ)) and k ∈ N ∪ {0}, using

the law of iterated expectations. Also, by construction, we have that

Ǧk,T (b)− Ǧk,T (β0(τ)) = Ǧk,T (b)− Ǧk,T (0) =
1√
T

T∑
t=1

Φk

(
t

T

)
ϕt(b)Xt

=
1√
T

T∑
t=1

Φk

(
t

T

)
ψt(b).

With γT = T−1/4 log(T ), we want to show that there exists a suffi ciently large constant M > 0 that does

not depend on k ∈ N ∪ {0} and satisfy that

lim
T→∞

P

(
sup

b∈NεT (β0(τ))

∣∣∣∣∣ 1√
T

T∑
t=1

Φk

(
t

T

)
ψt(b)

∣∣∣∣∣ > MγT

)
= 0. (57)

To establish the result in (57), we follow the following steps 1—3. Step 1: Fix b ∈ NεT (β0(τ)), and show

that

var

(
1√
T

T∑
t=1

Φk

(
t

T

)
ψt(b)

)
= O

(
1√
T

)
, (58)

where the upper bound for the term O(T−1/2) does not depend on k and b. From the stationarity of

{ψt(b)}, we have that

var

(
1√
T

T∑
t=1

Φk

(
t

T

)
ψt(b)

)
= var

(
Φk

(
t

T

)
ψ1(b)

)
+ 2

T∑
s=2

(
1− t

T

)
Cov(Φk

(
t

T

)
ψs(b),Φk

(
1

T

)
ψ1(b))

≤
(

sup
1≤s≤T,k∈N

∣∣∣Φk

( s
T

)∣∣∣)2

×
(
var(ψ1(b)) + 2

T∑
s=2

|Cov(ψs(b), ψ1(b))|
)
.

(59)

For the variance term in (59), note that var(ψ1(b)) = E[ψ2
1(b)] = E[X2

1E[ϕ2
1(b)|X1]] holds.Also, conditioning

on X1, ϕt(b) is a centered Bernoulli random variable, and we denote its conditional success probability

pb(X1) for any b ∈ NεT (β0(τ)). We then use the boundedness assumption |f(e|x)| ≤ C in Assumption 3

and obtain that

pb(X1) ≤ |F (X ′1b|X1)− F (0|X1)| =
∣∣∣∣∣
∫ X′1b

−∞
f(e|X1)de−

∫ 0

−∞
f(e|X1)de

∣∣∣∣∣ ≤ (CεT ) · |X1| (60)
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for some constant C > 0. Using this result, we can bound the conditional variance of ϕ2
1(b), which is equal

to (1− pb(X1))pb(X1), as below:

var(ϕ2
1(b)|X1] = E[ϕ2

1(b)|X1] = (1− pb(X1))pb(X1) ≤ pb(X1) ≤ (CεT ) · |X1|.

The results, together with Assumption 4-iv), lead us to conclude that

E[ψ2
1(b)] = E[X2

1E[ϕ2
1(b)|X1]] ≤ (CεT ) · E[|Xi|3] ≤ C ′ · εT

holds for some constant C ′ > 0, and any b ∈ NεT (β0(τ)). Next, we focus on covariance terms in (59).

Consider E
[
ψ2

1+s(b)ψ
2
1(b)

]
= E

[
ϕ2

1+s(b)ϕ
2
1(b)X2

1+sX
2
1

]
. Conditioning on (X1+s, X1), ϕ1(b) and ϕ1+s(b) are

centered Bernoulli random variables with success probabilities pb(X1) and pb(X1+s), respectively. By (60),

these probabilities are bounded by εT · |Xt| and εT · |Xt+s|, respectively. Additionally, ϕ1(b)ϕ1+s(b) is also

a Bernoulli random variable with conditional success probability pb(Xt)pb(Xt+s). We then have that

E
[
ϕ2

1+s(b)ϕ
2
1(b)|(X1+s, X1)

]
= var(ϕ1(b)ϕ1+s(b)|(X1+s, X1)] + E [ϕ1+s(b)|(X1+s, X1)] · E [ϕ1(b)|(X1+s, X1)]

= pb(X1)pb(X1+s) · (1− pb(X1)pb(X1+s)) + pb(X1)pb(X1+s)

≤ 2pb(X1)pb(X1+s) ≤ (2C2ε2T ) · |X1X1+s|,

and this leads us to obtain that

E
[
ψ2

1+s(b)ψ
2
1(b)

]
= E

[
ϕ2

1+s(b)ϕ
2
1(b)X2

1+sX
2
1

]
≤ (2C2ε2T ) · E[|X3

1+sX
3
1 |]] ≤ C ′′ε2T

holds for some positive constant C ′′ that does not depend on s. Summing up the results so far, we verified

that

E[ψ2
1(b)] = E[ψ2

1+s(b)] ≤ C ′ · εT and E
[
ψ2

1+s(b)ψ
2
1(b)

]
≤ C ′′ · ε2T

hold for some constants C ′ and C ′′. This finding allow us to apply Lemma 1 by setting δ = 1 and Vt = ψt(b),

and we obtain that

|Cov(ψ1+s(b), ψ1(b))| ≤ C ′′′εTα[s]1/2

holds for some universal constant C ′′′ > 0. Thus, we conclude that

T∑
s=2

|Cov(ψs(b), ψ1(b))| ≤
T∑
s=1

|Cov(ψs(b), ψ1(b))| ≤ C ′′′ · εT ·
( ∞∑
s=1

α[s]1/2

)
,

where the second-to-last inequality follows from Assumption 2,
∑∞

s=1 α[s]1/2 < ∞. This implies that the

following inequality

var

(
1√
T

T∑
t=1

ψt(b)

)
≤ var(ψ1(b)) + 2

T∑
s=2

|Cov(ψs(b), ψ1(b))| ≤ C̃√
T

(61)
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holds for suffi ciently large T with some positive C̃ > 0. This result, together with uniform boundedness of

Φk (·), implies that

var

(
1√
T

T∑
t=1

Φk

(
t

T

)
ψt(b)

)
≤
(

sup
1≤s≤T,k∈N

∣∣∣Φk

( s
T

)∣∣∣)2

×
(
var(ψ1(b)) + 2

T∑
s=2

|Cov(ψs(b), ψ1(b))|
)
(62)

= O

(
1√
T

)
,

which is the desired result. Step 2: Fixed b ∈ NεT (β0(τ)). Using the result in Step 1, we show that there

exist some positive constants c1 and C̃ such that

P

(∣∣∣∣∣ 1√
T

T∑
t=1

Φk

(
t

T

)
ψt(b)

∣∣∣∣∣ > MγT

)
= exp

(
−c1

C̃
M2 log(T )2

)
(63)

holds for any finiteM > 0 that does not depend on k ∈ N ∪ {0}.We apply Lemma 2 to Ut = Φk(t/T )ψt(b),

B = ∆·O(T 1/5), γT = T−1/4 log T, and x = M
√
TγT , and obtain that, for suffi ciently large T,

P

(∣∣∣∣∣
T∑
t=1

Φk

(
t

T

)
ψt(b)

∣∣∣∣∣ > M
√
TγT

)
≤ exp

− c1

(
M
√
TγT

)2

var
(∑T

t=1 ψt(b)
)

+
(
M
√
TγT

)
B log(T )2 +B2


≤ exp

(
− c1M

2 (log T )2 T 1/2

C̃T 1/2 +MT 1/4(log T )3B +B2

)

= exp

(
− c1M

2 (log T )2

C̃ + ∆Mn−1/4O(n1/5) log(T )3 + ∆2T 2/5T−1/2

)

= exp

(
− c1M

2 (log T )2

C̃ +O(T−1/20) log(T )3 +O(T−1/10)

)

holds for any fixed b ∈ NεT (β0(τ)). The result implies that

P

(∣∣∣∣∣ 1√
T

T∑
t=1

Φk

(
t

T

)
ψt(b)

∣∣∣∣∣ > MγT

)
≤ exp

(
−c1

C̃
M2 log(T )2

)

holds for constants c1, C̃ > 0 and suffi ciently large number of T. Step 3: We now extend the pointwise result

of (63) in Step 2 to the uniform one with respect to all b ∈ NεT (β0(τ)). This can be shown by extending

a classical chaining technique, e.g., Bickel (1975) and Zhou and Portnoy (1996), and accounting for the

temporal dependence in the process {ψt(b)}Tt=1. Let `T = T−1/4. We first partition the local parameter

space NεT (β0(τ)) into ∪Nj=1(NεT (β0) ∩ Ej), where Ej , for j ∈ {1, . . . , N}, are closed cubes, whose vertices

are on the set

{(kj1`T εT , . . . , kjd`T εT )} for kjm ∈ {0,±1, . . . ,±
⌊
`−1
T

⌋
+ 1}

with m ∈ {1, . . . , d}. If b ∈ NεT (β0(τ)) ∩ Ej , we denote bj as the lowest vertex of the cube Ej containing

b. The side length of each cube Ej is `T εT = C0T
−3/4, and we set the total number of cubes equal to
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N = (2
⌊
`−1
T

⌋
+ 3)d. We have that

sup
b∈NεT (β0(τ))

∣∣∣∣∣ 1√
T

T∑
t=1

Φk

(
t

T

)
ψt(b)

∣∣∣∣∣ ≤ max
1≤j≤N

Pk,T (bj) + max
1≤j≤N

Qk,T (bj),

where

Pk,T (bj) =

∣∣∣∣∣ 1√
T

T∑
t=1

Φk

(
t

T

)
ψt(bj)

∣∣∣∣∣ ;
Qk,T (bj) = sup

b∈NεT (β0(τ))∩Ej

∣∣∣∣∣ 1√
T

T∑
t=1

Φk

(
t

T

)
(ψt(b)− ψt(bj))

∣∣∣∣∣ .
Without loss of generality, we assume that `−1

T is an integer so that N = (2`−1
T + 3)d. By Bonferroni

inequality and the result in step 2, we have that

P

(
max

1≤j≤N
Pk,T (bj) > MγT

)
≤ N · max

1≤j≤N
P (Pk,T (bj) > MγT )

≤ (2`−1
T + 3)d · exp

(
−c1

C̃
M2(log T )2

)
≤ (2T 1/4 + 3)d · exp

(
−c1

C̃
M2(log T )2

)
≤ max{1, 2d−1} · (2dT d/4 + 3d) · exp

(
−c1

C̃
M2(log T )2

)
≤ C̃ · exp

(
d

4
log T

)
· exp

(
−c1

C̃
M2(log T )2

)
≤ C̃ · exp

(
d

4
log T − c1

C̃
M (log T )2

)
= o

(
1

T

)
.

holds for some constant C̃ and any finite M > 0. Next, we consider the term Qk,T (b). Given the positive

sequence at,T = |Xt|`T εT , let us denote that

ϕ̃t(b, at,T ) :={1(et ≤ X ′tb+ at,T )− 1(et ≤ X ′b− at,T )}

−
{
E[1(et ≤ X ′tb+ at,T )|Xt]− E[1(et ≤ X ′b− at,T )|Xt])

}
;

ψ̃t(b, at,T ) := |Xt|ϕ̃t(b, at,T ).

By Assumption 4-ii) and |ϕ̃t(b, at,T )| ≤ 1 we have that a.s., max1≤t≤T |ψ̃t(b, at,T )| ≤ ∆T 1/5. Given j ∈

{1, . . . , N}, we utilize the monotonicity of the indicator function and obtain that

1√
T

T∑
t=1

Φk

(
t

T

)
(ψt(bj)− ψt(b))

=
1√
T

T∑
t=1

Φk

(
t

T

)
Xt

(
1(et ≤ X ′tb)− 1(et ≤ X ′tbj)−

{
E[1(et ≤ X ′tb|Xt]− E[1(et ≤ X ′tbj |Xt]

})
≤ sup

1≤s≤T

∣∣∣Φk

( s
T

)∣∣∣×{ 1√
T

T∑
t=1

|Xt|
{

1(et ≤ X ′tbj + at,T )− 1(et ≤ X ′bj − at,T )
}

+
1√
T

T∑
t=1

|Xt|
{
E[1(et ≤ X ′tbj + at,T )|Xt]− E[1(et ≤ X ′tbj − at,T |Xt])

}}
,
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where the inequality holds for all b ∈ NεT (β0(τ)) ∩ Ej . By triangle inequality, we can further bound the

right side of the inequality by (
sup

1≤s≤T,k∈N

∣∣∣Φk

( s
T

)∣∣∣) · (Ij,1 + Ij,2), (64)

where

Ij,1 =
1√
T

T∑
t=1

|ψ̃t(bj , at,T );

Ij,2 =
2√
T

T∑
t=1

|Xt|
{
E[1(et ≤ X ′tbj + at,T )|Xt]− E[1(et ≤ X ′tbj − at,T |Xt])

}
.

We want to show that

max
1≤j≤N

|Ij,1| = Op

(
(log T )3

T 3/10

)
and max

1≤j≤N
|Ij,2| =

(
log T

T 1/4

)
. (65)

For all j ∈ {1, . . . , N}, we can check that Ij,1 has a zero mean using the law of iterated expectation.

Additionally, it follows that

var

(
1√
T

T∑
t=1

Φk

(
t

T

)
ψ̃t(bj , at,T )

)
≤ C̆ ·

(
1

T 3/4

)
(66)

holds for some C̆ and any fixed b ∈ NεT (β0(τ)). The comprehensive proof for (66) can be conducted similarly

to that of (58) in Step 1, by showing that the variance of Ij,1 is uniformly bounded by O(`T εT ) = O(T−3/4).

We omit the details. Now, set ηT = T−3/10(log T )3, and we obtain that, for any M > 0,

P

(
max

1≤j≤N
|Ij,1| ≥MηT

)
≤

N∑
j=1

P (|Ij,1| > MηT ) .

For the summand in the right hand side of the inequality, we apply Lemma 2 to Ut = Φk(t/T )ψ̃t(bj , at,T ),

B = ∆T 1/5, ηT = T−3/10(log T )3, and x = M
√
TηT , and obtain that, for suffi ciently large T,

P (|Ij,1| > MηT ) = P

(∣∣∣∣∣
T∑
t=1

ψ̃t(bj , at,T )

∣∣∣∣∣ > M
√
TηT

)

≤ exp

− c1

(
M
√
TηT

)2

var(
∑T

t=1 ψ̃t(bj , at,T )) + (M
√
TηT )B(log T )2 +B2


= exp

− c1

(
M
√
T (log T )3T−3/10

)2

var(
∑T

t=1 ψ̃t(bj , at,T )) + (M
√
T (log T )3T−3/10)B(log T )2 +B2


= exp

(
− c1M

2(log T )6T 2/5

C̆T 1/4 + ∆M(log T )5T 2/5 + ∆2T 2/5

)

= exp

(
− c1M

2(log T )

C̆T−3/20(log T )−5 + ∆M + ∆2(log T )−5)

)

≤ exp

(
−c1M

∆
log(T )

)
.
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Note that the upper bound does not depend on j ∈ {1, . . . , N}. Thus, for M > 0 suffi ciently large, we have

that

P

(
max

1≤j≤N
|Ij,1| ≥MηT

)
≤

N∑
j=1

P (|Ij,1| > MηT ) ≤ N · exp

(
−c1M

∆
log(T )

)

≤ (2T 1/4 + 3)d · exp

(
−c1M

∆
log(T )

)
≤ C̃ ′ · exp

(
d

4
log T

)
exp

(
−c1M

∆
log(T )

)
≤ C̃ ′ · exp

((
d

4
− c1M

∆

)
log T

)
= o

(
1

T

)
,

for some C̃ ′ > 0, where the last equation follows by choosing suffi ciently large M > (d/4) · (∆/c1). This

shows the first result in (65). For the second result in (65), we have that

Ij,2 =
2√
T

T∑
t=1

||Xt|| ·
∫ X′tbj+at,T

−∞
f(e|Xt)de−

∫ X′tbj−at,T

−∞
f(e|Xt)de

≤ 2√
T

T∑
t=1

(
||Xt|| ·

∫ X′tbj+|Xt|`T εT

X′tbj−|Xt|`T εT
f(e|Xt)de

)
.

Note that

|X ′tbj | ≤ ||X||∞ · sup
b∈NεT (β0(τ))

||b|| = ||X||∞εT =
∆C0

T 3/10
,

and this leads us to obtain that∫ Xtbj+|Xt|`T εT

Xtbj−|Xt|`T εT
f(e|Xt)de ≤ sup

|q|≤||X||∞εT

∫ q+||Xt||`T εT

q−||Xt||`T εT
f(e|Xt)de

≤ ||Xt||`T εT sup
|q|≤||Xt||∞εT
|h|≤||Xt||∞`T εT

F (q + h|Xt)− F (q + h|Xt)

|h|

≤ ||Xt||`T εT sup
|q|≤||Xt||∞εT
|h|≤||Xt||∞`T εT

F (q + h|Xt)− F (q + h|Xt)

|h| . (67)

Since ||Xt||∞`T εT = O(T−11/20) is o(1), |h| in (67) shrinks to zero, as T increases to infinity. This, together

with Assumption 3-i), implies that

|Ij,2| ≤ (∆C0`T ) ·
(

2

T

T∑
t=1

||Xt||2
)
·O(1) = Op

(
1

T 1/4

)
,

where the upper bound does not depend on the index of cube j ∈ {1, . . . , N}. In summary so far, we have

shown that

sup
b∈NεT (β0(τ))

||Ǧk,T (b)− Ǧk,T (β0(τ))|| = sup
b∈NεT (β0(τ))

∣∣∣∣∣ 1√
T

T∑
t=1

Φk

(
t

T

)
ψt(b)

∣∣∣∣∣
≤ max

1≤j≤N
Pk,T (bj) + max

1≤j≤N
Qk,T (bj), (68)
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and the upper bound in (68) satisfies that

max
1≤j≤N

Pk,T (b) = max
1≤j≤N

∣∣∣∣∣ 1√
T

T∑
t=1

Φk

(
t

T

)
ψt(bj)

∣∣∣∣∣ = Op

(
log T

T 1/4

)
, (69)

and

max
1≤j≤N

Qk,T (bj) = max
1≤j≤N

sup
b∈NεT (β0(τ))∩Ej

∣∣∣∣∣ 1√
T

T∑
t=1

Φk

(
t

T

)
(ψt(b)− ψt(bj))

∣∣∣∣∣
≤ sup

1≤t≤T,k∈N∪{0}

∣∣∣∣Φk

(
t

T

)∣∣∣∣ · ( max
1≤j≤N

|Ij,1|+ max
1≤j≤N

|Ij,2|
)

(70)

= Op

(
(log T )3

T 3/10

)
+Op

(
1

T 1/4

)
= Op

(
log T

T 1/4

)
, (71)

where the upper bounds for (69) and (71) do not depend on k ∈ N ∪ {0}. These results lead us to conclude

that

sup
b∈NεT (β0(τ))

||Ǧk,T (b)− Ǧk,T (β0(τ))|| = Op

(
log T

T 1/4

)
,

which is the desired result. To prove the result in (56), we define a mean zero process

πt(b) = (XtE[1(et ≤ 0)− 1(et ≤ X ′tb)|Xt])− E
[
Xt

{
1(et ≤ 0)− 1(et ≤ X ′tb)

}]
= Xtp̃b(Xt)− E [Xtp̃b(Xt)]

for any given b ∈ NεT (β0(τ)), where p̃b(Xt) = sgn(Xtb) · (F (X ′1b|Xt)−F (0|Xt)). By construction, we have

that

G̃k,T (b)− G̃k,T (β0(τ)) = G̃k,T (b)− G̃k,T (0) =
1√
T

T∑
t=1

Φk

(
t

T

)
πt(b)Xt

=
1√
T

T∑
t=1

Φk

(
t

T

)
ξt(b).

Then, the proof of (56) can be carried out in a similar manner to the proof of (55) by properly modifying

its Steps 1—3. To be more specific, we follow Step 1’—3’as below: Step 1’: For any fixed b ∈ NεT (β0(τ)),

we have that

var

(
1√
T

T∑
t=1

Φk

(
t

T

)
ξt(b)

)
= O

(
1

n

)
, (72)

where the upper bound for the term O(T−1) does not depend on k and b. To prove this result, note that

var(ξt(b)) = E[X2
t (F (Xtb|Xi)− F (0|Xt))

2]

= E[X2
t (F (Xtb|Xt)− F (0|Xt))

2]

≤ E[X4
t ] · ε2T = O

(
1

T

)
, (73)
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where the inequalities in (73) follows by Assumptions 3 and 4. Also, it can be shown that the (absolute)

sum of covariance between ξ1(b) and ξ1+s(b) over s ∈ {2, . . . , T}, is O(T−1). Specifically, we can show that

E
[
ξ2

1(b)
]

= E
[
ξ2

1+s(b)
]
≤ C ′ε2T ;

E[ξ2
1(b)ξ2

1+s(b)] ≤ C ′′ε4T

for constants C ′ and C ′′. This allows us to apply the covariance inequality for mixing processes in Lemma

1 and obtain that
T∑
s=2

|Cov(ψ1+s(b), ψ1(b))| ≤ O
(
ε2T

∞∑
s=1

α[s]1/2

)
= O

(
1

T

)
,

which can be completed in a similar way as shown in Step 1 of the proof of Lemma 4, we skip the details.

Step 2’: Choose γT = (log T )3/T (3/10). Then, using the result in Step 1’, we show that there exists a

positive constant M for suffi ciently large T such that

P

(∣∣∣∣∣ 1√
T

T∑
t=1

Φk

(
t

T

)
ξt(b)

∣∣∣∣∣ > MγT

)
= o

(
1

T

)
. (74)

holds for any fixed b ∈ NεT (β0(τ)). Similar to what was shown in Step 2 of the proof of (63), the result

in (74) can be verified by applying Lemma 2. We skip the details. Step 3’: Extend the pointwise result of

(63) in Step 2’to the uniform result with respect to all b ∈ NεT (β0(τ)), so that the result in (56) holds.

This process can also be shown using the same technique shown in Step 3 of the proofs for (68)—(71), and

the details are omitted.

To introduce the next lemma, we define

M̌T (b) =
1√
T

T∑
t=1

eT (t)(Zt(b)− E[Zt(b)|Xt]);

M̃T (b) =
1√
T

T∑
t=1

eT (t)(E[Zt(b)|Xt]− E[Zt(b)]),

over b ∈ NεT (β0(τ)), where the weight function in these empirical processes is defined as

eT (t) = T−1
T∑
s=1

Qh(t/T, s/T )−
∫ 1

0
Qh (t/T, s) ds.

Lemma 5. Suppose Assumptions 1—4 hold, and fix any positive constant C0 for εT = C0T
−1/2 in NεT (β0(τ)).

Then, as T grows to infinity, we have that

sup
b∈NεT (β0(τ))

||M̌T (b)− M̌T (β0(τ))|| = op

(
log T

T 1/4

)
; (75)

sup
b∈NεT (β0(τ))

||M̃T (b)− M̃T (β0(τ))|| = op

(
(log T )3

T 3/10

)
. (76)
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Proof of Lemma 5. From Assumption 1, where the functions used to construct Q
h
(·, ·) are piecewise-

monotonic, it follows that sup1≤s≤T |eT (s)| = O(1/T ) holds for any fixed h. Using this property, proofs

of (75) and (76) can be followed in exactly the same manner as the proofs of (55) and (56) in Lemma

4. The main difference involves replacing Φk (·) in Ǧk,T (b) and G̃k,T (b) with eT (·) in M̌T (b) and M̃k,T (b).

Specifically, we can replace sup1≤s≤T,k∈N |Φk (s/T )| = O(1) with sup1≤s≤T |eT (s)| = O(1/T ) in (59), (62),

(64), and (70). This substitution allows us to obtain the desired convergence rates in (75) and (76). To

save space, the details of these steps are omitted.

Lemma 6. Let us denote Ω̃∗h(τ) as the infeasible version of Ω̂∗h(τ), which is defined as:

Ω̃∗h(τ) =
1

n

T∑
t=1

T∑
s=1

Q∗h

(
t

T
,
s

T

)
ZtZ

′
s.

Then, as T →∞ and h is fixed, we have that

Ω̃∗h(τ)
d→ Ω1/2

( ∞∑
k=1

λkZkZ′k

)
Ω1/2′,

where Zk
i.i.d∼ N(0, Id).

P

(
1√
T

T∑
t=1

Φk

(
t

T

)
Zt ≤ x for k = 0, 1, ..., J

)

= P

(
Ω1/2(τ)

1√
T

T∑
t=1

Φk

(
t

T

)
ut ≤ x for k = 0, 1, ..., J

)
+ o(1),

for every fixed J ∈ N, x ∈ Rd where Φ0 (·) = 1, ut
i.i.d.∼ N(0, Id), and Ω1/2(τ) is a matrix square root of

Ω(τ) such that Ω1/2(τ)Ω1/2(τ)′ = Ω(τ).

Proof of Lemma 6. Recall that the spectral representation of Q∗h(·, ·) in (15) enables us to re-express Ω̃∗h(τ)

as:

Ω̃∗h(τ) =

∞∑
k=1

λk

(
1√
T

T∑
t=1

Φk

(
t

T

)
Zt

)(
1√
T

T∑
s=1

Φk

( s
T

)
Zs

)′
.

For every J ∈ N fixed, define

Ω̃∗h,J(τ) :=
J∑
k=1

λk

(
1√
T

T∑
t=1

Φk

(
t

T

)
Zt

)(
1√
T

T∑
s=1

Φk

( s
T

)
Zs

)′
.

Without loss of generality, we assume that Ω̃∗h(τ) and Ω̃∗h,J(τ) are scalar random variables. Then, we can

apply the same truncation argument as in the proof of Lemma 1 in Sun (2014b). Setting ωT = Ω̃∗h(τ),

ξT,J = Ω̃∗h,J(τ), and

ξ∗T,J := Ω1/2(τ)

J∑
k=1

λk

(
1√
T

T∑
t=1

Φk

(
t

T

)
ut

)(
1√
T

T∑
s=1

Φk

( s
T

)
us

)
Ω1/2(τ)
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for ut
i.i.d.∼ N(0, Id), Assumptions 1 and 5 imply that conditions i)-iv) in Lemma A.3 of Sun (2014b) hold,

including

sup
T
P
(
|Ω̃∗h(τ)− Ω̃∗h,J(τ)| > δ

)
p→ 0,

as J →∞, for every δ > 0. Therefore, the result in Lemma A.3 of Sun (2014b) holds, which indicates

Ω̃∗h(τ)
d→ Ω1/2(τ)

(∫ 1

0

∫ 1

0
Q∗h (r, s) dWd(r)dWd(s)

)
Ω1/2(τ)′

d
= Ωh,∞(τ) := Ω1/2(τ)Sh,∞Ω1/2(τ)′,

as the desired result.

8.5 Proofs of main results

Proof of Theorem 1. Without loss of generality, we assume that the dimension of Xi is equal to one when-

ever it it is convenient. We first show the result in (13), whenever it is convenient. With simple algebra,

we can write that

Ω̂∗h(τ)− Ω̂h(τ) =
1

T

T∑
t=1

T∑
s=1

{
Q∗h

(
t

T
,
s

T

)
−Q∗T,h

(
t

T
,
s

T

)}
ẐtẐ

′
s

= A1 +A2 −A3,

where

A1 =
1

T

T∑
t=1

T∑
s=1

eT (s)ẐtẐ
′
s and A2 =

1

T

T∑
t=1

T∑
s=1

eT (t)ẐtẐ
′
s,

with

eT (t) =
1

T

T∑
s=1

Qh

(
t

T
,
s

T

)
−
∫ 1

0
Qh

(
t

T
, s

)
ds,

and

A3 =

 1

T 2

T∑
t̃=1

T∑
s̃=1

Qh

(
t̃

T
,
s̃

T

)
−
∫ 1

0

∫ 1

0
Qh(r, s)drds

[ 1

T

T∑
t=1

T∑
s=1

ẐtẐ
′
s

]
.

Given that T−1/2
∑T

t=1 Ẑt = op(1) and Q
h
(·, ·) is piecewise continuous and bounded over [0, 1]2, it is

straightforward to verify that A3 = op(1). Next, we want to show that both A1 = op(1) and A2 = op(1).

We first consider the term A1, which can be bounded as below:

||A1|| ≤
∥∥∥∥∥ 1√

T

T∑
t=1

Ẑt

∥∥∥∥∥︸ ︷︷ ︸
=op(1) ∵(1)

·
∥∥∥∥∥ 1√

T

T∑
s=1

eT (s)Ẑs

∥∥∥∥∥ . (77)
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For the second term in the product on the right-hand side of (77), we have that∥∥∥∥∥ 1√
T

T∑
s=1

eT (s)Ẑs

∥∥∥∥∥ ≤ sup
b∈NεT (β0(τ))

∥∥∥∥∥ 1√
T

T∑
s=1

eT (s)Zs(b)

∥∥∥∥∥
≤ sup

b∈NεT (β0(τ))

∥∥∥∥∥ 1√
T

T∑
s=1

eT (s)(Zs(b)− Zs(β0(τ)))

∥∥∥∥∥+

∥∥∥∥∥ 1√
T

T∑
s=1

eT (s)Zs(β0(τ))

∥∥∥∥∥ , (78)

where Zs(b) = Xs(τ − 1(es ≤ Xs(b− β0(τ)))) for any b ∈ NεT (β0(τ)). By construction, Zs(β0(τ)) is equal

to Zs = Xs(τ − 1(es ≤ 0)). We use triangle inequality to construct the upper bound for the first part of

(78):

sup
b∈NεT (β0(τ))

∥∥∥∥∥ 1√
T

T∑
s=1

eT (s)(Zs(b)− Zs(β0(τ)))

∥∥∥∥∥
≤ sup

b∈NεT (β0(τ))

∥∥M̌T (b)− M̌T (β0(τ))
∥∥+ sup

b∈NεT (β0(τ))

∥∥∥M̃T (b)− M̃T (β0(τ))
∥∥∥ (79)

+

∥∥∥∥∥ 1√
T

T∑
s=1

eT (s)

∥∥∥∥∥ · sup
b∈NεT (β0(τ))

‖E[Zs(b)− Zs(β0)]‖ ,

where the terms in (79) are op(1) from Lemma 5. To deal with the last term on the right-hand side of the

inequality above, we use Assumption 3-i) and Taylor expansion conditioning on Xs, and obtain that

F (X ′s(b−β0(τ))|Xs) = F (0|Xs)+f(0|Xs)Xs(b−β0(τ))+f ′(0|Xs)X
2
s (b−β0(τ))2+f

′′
(Xsb̃ |Xs)X

3
s (b−β0(τ))3

for some b̃ that lies between b and β0(τ). Because of the boundedness f(0|Xs) and its derivatives up to the

second order in Assumption 3-i) and the condition in Assumption 4-iii), each term on the right-hand side

is finite. Taking expected values on both sides of the equation after multiplying by Xs, and assuming that

β0(τ) = 0 without loss of generality, we can obtain that

E[Zs(b)]− E[Zs(β0(τ))] =
(
E[Xs1(es ≤ 0)]− E[Xs1(es ≤ X

′
s(b− β0))]

)
= Ab+Bb2 + Cb3,

for any b ∈ NεT (β0(τ)), where the coeffi cients of the polynomial approximation function A, B, and C are

given by

A = −E[f(0|Xs)X
2
s ], B = −1

2
E[f ′(0|Xs)X

3
s ], and C = −1

6
E[f ′′(Xsb̃|Xs)X

4
s ],

respectively. The result then indicates that

√
T

(
sup

b∈NεT (β0(τ))
||Ab+Bb2 + Cb3||

)
= Op(1), (80)

and thus we can obtain that∥∥∥∥∥ 1√
T

T∑
s=1

eT (s)

∥∥∥∥∥ · sup
b∈NεT (β0(τ))

‖E[Zs(b)− Zs(β0(τ))]‖

≤ sup
1≤s≤T

|eT (s)| ·
√
T

(
sup

b∈NεT (β0(τ))
||Ab+Bb2 + Cb3||

)
= Op

(
1

T

)
.
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This result, together with the op(1) terms in (79), leads us to conclude that

sup
b∈NεT (β0(τ))

∥∥∥∥∥ 1√
T

T∑
s=1

eT (s)(Zs(b)− Zs(β0(τ)))

∥∥∥∥∥ = op(1).

For the second term in (78), note that E[T−1/2
∑T

s=1 eT (s)Zs(β0(τ))] = 0 and its variance is bounded by

var

(
1√
T

T∑
s=1

eT (s)Zs(β0(τ))

)
≤ sup

1≤s≤T
|eT (s)| · var

(
1√
T

T∑
s=1

Zs(β0(τ))

)

≤ O
(

1

T

)
·
( ∞∑
s=−∞

||E[ZtZt+s]||
)

= O

(
1

T

)
,

which implies that the second term in (78) is op(1) by Markov inequality. Summing up so far, we showed

that

||A1|| ≤
∥∥∥∥∥ 1√

T

T∑
s=1

Ẑs

∥∥∥∥∥︸ ︷︷ ︸
=op(1)

·
∥∥∥∥∥ 1√

T

T∑
s=1

eT (s)Ẑs

∥∥∥∥∥︸ ︷︷ ︸
=op(1)

= op(1).

The proof for A2 = op(1) can be performed in the same manner. Combining the results of Aj = op(1) for

j ∈ {1, 2, 3} together, we can infer that

Ω̂h(τ) = Ω̂∗h(τ) + op(1). (81)

Next, we want to show that

Ω̂∗h(τ) = Ω̃∗h(τ) + op(1), (82)

where Ω̃∗h(τ) is the infeasible version of Ω̂∗h(τ), i.e.,

Ω̃∗h(τ) =
1

T

T∑
t=1

T∑
s=1

Q∗h

(
t

T
,
s

T

)
ZtZ

′
s.

To prove this, we define

Ω̂∗h(τ ; b) :=
1

T

T∑
t=1

T∑
s=1

Q∗h

(
t

T
,
s

T

)
Zt(b)Z

′
s(b),

for b ∈ NεT (β0(τ)). Using (15), we can re-express Ω̂∗h(τ ; b) as:

Ω̂∗h(τ ; b) =
∞∑
k=1

λk

(
1√
T

T∑
t=1

Φk

(
t

T

)
Zt(b)

)(
1√
T

T∑
s=1

Φk

( s
T

)
Zs(b)

)′
.

Given k ∈ N, we define that

Rk,T (b) :=
1√
T

T∑
t=1

Φk

(
t

T

)
(Zt(b)− Zt).
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By triangle inequality,

‖Rk,T (b)‖ =

∥∥∥∥∥ 1√
T

T∑
t=1

Φk

(
t

T

)(
Xt{1(et ≤ X ′i(b− β0(τ)))− 1(et ≤ 0)}

)∥∥∥∥∥
≤ sup

b∈NεT (β0(τ))
||Ǧk,T (b)− Ǧk,T (β0(τ))||+ sup

b∈NεT (β0(τ))
||G̃k,T (b)− G̃k,T (β0(τ))||

+ sup
b∈NεT (β0(τ))

||Λk(b)− Λk(β0(τ))||,

where

Λk(b) :=

(
1√
T

T∑
t=1

Φk

(
t

T

))
· E[Zt(b)].

The results in Lemma 4 indicate that

sup
b∈NεT (β0(τ))

||Ǧk,T (b)− Ǧk,T (β0(τ))|| = op(1) and sup
b∈NεT (β0(τ))

||G̃k,T (b)− G̃k,T (β0(τ))|| = op(1)

hold uniformly over k ∈ N. Also, in view of (80), we have

sup
b∈NεT (β0(τ))

||Λk(b)− Λk(β0(τ))|| =
∥∥∥∥∥
(

1√
T

T∑
t=1

Φk

(
t

T

))
·
(
E[Xt1(et ≤ X ′t(b− β0(τ)))]− E[Xt1(et ≤ 0)]

)∥∥∥∥∥
=

∥∥∥∥∥
(

1√
T

T∑
t=1

Φk

(
t

T

))
·
(
Ab+Bb2 + Cb3

)∥∥∥∥∥
≤
∥∥∥∥∥ 1

T

T∑
t=1

Φk

(
t

T

)∥∥∥∥∥︸ ︷︷ ︸
=o(1)

·
(
√
T sup
b∈NεT (β0(τ))

||Ab+Bb2 + Cb3||
)

︸ ︷︷ ︸
=Op(1)

= op(1).

Combining the results together, we can conclude that ||Rk,T (b)|| = op(1) holds uniformly over b ∈

NεT (β0(τ)) and k ∈ N. Additionally, we have that T−1/2
∑T

t=1 Φk (t/T )Zt = Op(1) uniformly over k ∈ N.

The result, together with ||Rk,T (b)|| = op(1), implies that T−1/2
∑T

t=1 Φk (t/T )Zt(b) = Op(1) uniformly

over b ∈ NεT (β0(τ)) and k ∈ N. Therefore, we can express Ω̂∗h(τ ; b) as:

Ω̂∗h(τ ; b) =
∞∑
k=1

λk

(
1√
T

T∑
t=1

Φk

(
t

T

)
Zt +Rk,T (b)

)(
1√
T

T∑
s=1

Φk

( s
T

)
Zs +Rk,T (b)

)′

=

∞∑
k=1

λk

(
1√
T

T∑
t=1

Φk

(
t

T

)
Zt

)(
1√
T

T∑
s=1

Φk

( s
T

)
Zs

)′

+
∞∑
k=1

λkRk,T (b)

(
1√
T

T∑
s=1

Φk

( s
T

)
Zs

)′
+
∞∑
k=1

λk

(
1√
T

T∑
t=1

Φk

(
t

T

)
Zt

)
Rk,T (b)′ +

∞∑
k=1

λkRk,T (b)Rk,T (b)′

=

∞∑
k=1

λk

(
1√
T

T∑
t=1

Φk

(
t

T

)
Zt

)(
1√
T

T∑
s=1

Φk

( s
T

)
Zs

)′
︸ ︷︷ ︸

:=Ω̃∗h(τ)

+ op(1). (83)
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The last equation holds because Rk,T (b) shrinks to zero uniformly over b ∈ NεT (β0(τ)) and k ∈ N, and∥∥∥∥∥∥
∞∑
k=1

λkRk,T (b)

(
1√
T

T∑
s=1

Φk

( s
T

)
Zs

)′∥∥∥∥∥∥ ≤
(

sup
k∈N
||Rk,T (b)||

)( ∞∑
k=1

λk

∥∥∥∥∥ 1√
T

T∑
s=1

Φk

( s
T

)
Zs

∥∥∥∥∥
)

= op(1), (84)

where (84) follows from supk∈N ||Rk,T (b)|| = op(1),
∑∞

k=1 λk = O(1), and the fact that var(T−1/2
∑T

s=1 Φk(s/T )Zs)

is bounded uniformly over k. Additionally, we have that∥∥∥∥∥
∞∑
k=1

λkRk,T (b)Rk,T (b)′

∥∥∥∥∥ ≤
(

sup
k∈N,∈NεT (β0(τ))

||Rk,T (b)||
)2

·
( ∞∑
k=1

λk

)
= op(1),

where the equation follows from
∑∞

k=1 λk =
∫ 1

0 Qh(r, r)dr = O(1), and supk∈N,∈NεT (β0(τ)) ||Rk,T (b)|| =

op(1). From this finding and β̂(τ) ∈ NεT (β0(τ)), with probability arbitrarily close to one, we can conclude

that

||Ω̂∗h(τ)− Ω̃∗h(τ)|| ≤ sup
b∈NεT (β0(τ))

∥∥∥Ω̂∗h(τ ; b)− Ω̃∗h(τ)
∥∥∥+ op(1).

Using the same reasoning as shown for Ω̂h(τ) = Ω̂∗h(τ) + op(1), we can show that Ω̃∗h(τ) = Ω̃h(τ) + op(1)

holds for all h, where

Ω̃h(τ) =
1

T

T∑
t=1

T∑
s=1

Q∗T,h

(
t

T
,
s

T

)
ZtZ

′
s =

1

T

T∑
t=1

T∑
s=1

Qh

(
t

T
,
s

T

)
ZctZ

c′
s

with Zct = Zt − T−1
∑T

s=1 Zs. Combining the result into Ω̂h(τ) = Ω̂∗h(τ) + op(1) and (82), we can conclude

that

Ω̂h(τ)− Ω̃h(τ) = (Ω̂h(τ)− Ω̂∗h(τ)) + (Ω̂∗h(τ)− Ω̃∗h(τ)) + (Ω̃∗h(τ)− Ω̃h(τ))

= op(1)

holds for any fixed h, which is the desired result. For the result in (23), we use

Ω̂h(τ) = Ω̂∗h(τ) + op(1) = Ω̃∗h(τ) + op(1),

where Ω̃∗h(τ) is defined in (83). Then, (23) follows directly from the result in Lemma 6.

Proof of Theorem 2. Let ∆(τ) be a p×p matrix such that ∆(τ)∆(τ)′ = RD(τ)−1Ω(τ)D(τ)−1R′. From (4)

and the result in Theorem 1, and by applying Slutsky’s theorem, we obtain

√
TR(β̂(τ)− β0(τ))

d→ ∆(τ)Zp;

RΣ̂(τ)R′
d→ (RD(τ)−1Ω(τ)1/2)Sh,∞(Ω(τ)1/2′D(τ)−1R′)︸ ︷︷ ︸

d
=∆(τ)S[p]h,∞∆(τ)′,

,
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where the weak convergences hold jointly. Note that Zp = Wp(1) and S[p]
h,∞ =

∑∞
j=1 λjZp,jZ′p,j with

Zp,j :=
∫ 1

0 Φj (r) dWp(r)
i.i.d.∼ N(0, Ip). Zp and S

[p]
h,∞ are independent because

Cov(Zp,Zp,j) = Cov

(
Wp(1),

∫ 1

0
Φj (r) dWp(r)

)
= Cov

(∫ 1

0
dWp(r),

∫ 1

0
Φj (r) dWp(r)

)
= Ip ·

∫ 1

0
Φj (r) dr

for all j ∈ N. This allows us to obtain the result in part (a) using the continuous mapping theorem. The

result with p = 1 can be shown in a similar manner. For the result in part (b), it follows directly from

the fact that S[p]
h,∞ can also be represented as K

−1Wp(K, Ip), and from the equivalence between Hotelling’s

T -squared random variable and a scaled F -random variable, as discussed in Sun (2013, pp. 6).
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