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Abstract

This paper develops asymptotic F and t tests for nonlinear cointegrated re-
gression, where regressors are asymptotically homogeneous transformations of I(1)
processes. These transformations encompass a broad class of functions, includ-
ing distribution-like functions, logarithmic functions, and asymptotically polynomial
functions. Our asymptotic F and t test theory covers both the case with exogenous
regressors and the case with endogenous regressors. For the exogenous case, we con-
struct a novel set of basis functions for series long-run variance estimation, effectively
accounting for parameter estimation uncertainty. For the endogenous case, we extend
the transformed-augmented OLS approach developed for linear cointegrated settings.
Monte Carlo simulations show that our asymptotic F and t tests outperform compet-
ing tests, including the asymptotic chi-square test based on the fully modified OLS
estimator and the non-standard fixed-b test based on the integrated modified OLS
estimator. Furthermore, our theory extends to cases where the processes driving
regressors are nonstationary, fractionally integrated processes.
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1 Introduction

Cointegrated systems have been extensively studied in econometrics due to their impor-
tance in modeling long-term relationships among integrated variables. While much of the
focus has been on linear cointegration, recent advancements have explored nonlinear dy-
namics. Nonlinear cointegration models are particularly useful for capturing nonlinear
relationships between nonstationary economic variables (e.g., Park and Phillips (2001)).
As might be expected, the asymptotic analysis of cointegrated regressions becomes more
complex when nonlinear transformations of unit root I(1) processes are introduced into
the system. Additionally, statistical inference faces challenges in accounting for nonpara-
metric autocorrelation in the cointegration errors and their potential correlation with the
regressors.

In this paper, we develop asymptotic F and t tests for a triangular cointegrated system,
where the regressors are asymptotically homogeneous functions of I(1) processes. The class
of asymptotically homogeneous functions, introduced by Park and Phillips (1999), encom-
passes a wide range of functions, including constant functions, distribution-like functions,
logarithmic functions, and functions that asymptotically resemble polynomials. Empirical
applications of asymptotically homogeneous cointegrated systems include smooth transi-
tion models (e.g., Saikkonen and Choi (2004)), the money demand function (e.g., Bae and
De Jong (2007)), the carbon Kuznets curve (e.g., Chan and Wang (2015)), and the multi-
factor translog production function (e.g., Vogelsang and Wagner (2024)). Our asymptotic
F and t test theory applies to this class of nonlinear cointegration models in both exogenous
and endogenous settings.

We begin by examining cointegration under the assumption that the regressors are
exogenous and establish the asymptotic mixed-normal distribution of the ordinary least
squares (OLS) estimator. The conditional asymptotic variance depends on the long-run
variance (LRV) of the cointegration errors, which may exhibit autocorrelation of unknown
forms. It is standard practice to estimate the LRV using a kernel method and to construct
test statistics based on the kernel LRV estimator. The conventional approach employs
increasing-smoothing asymptotics, under which the distribution of the LRV estimator is
approximated by a degenerate distribution concentrated at the true LRV. As a result, the
Wald and t statistics are asymptotically chi-squared and normal, respectively. However,
these asymptotic approximations fail to account for the estimation uncertainty of the LRV
estimator and are prone to large size distortions in finite samples. See, for example, Kiefer
and Vogelsang (2005), Sun et al. (2008), and Sun (2014).

In response, we propose using a series-based LRV estimator and approximating its dis-
tribution through fixed-smoothing asymptotics. This type of asymptotics is often referred
to as fixed-K asymptotics in the literature, where K is the smoothing parameter held
fixed in the limiting experiment. It has been utilized in prior studies, such as Phillips
(2005), Müller (2007), and Sun (2013), albeit within frameworks involving only stationary
processes. For linear cointegration regressions with I(1) regressors, Sun (2023) adopts a
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series-based method and shows that asymptotically pivotal inference is possible, although
the mechanics are different from those in the stationary setting. However, for cointegration
regressions with transformed I(1) regressors, as considered here, challenges emerge. Specif-
ically, if we employ commonly used orthonormal basis functions in L2 [0, 1] to construct the
series LRV estimator, as in the stationary framework and Sun (2023), the resulting test
statistic will not be asymptotically pivotal.

To address this issue and develop asymptotically pivotal F and t test theory under
fixed-smoothing asymptotics, we construct a novel set of basis functions tailored for LRV
estimation in the cointegration framework. For any given set of basis functions in L2 [0, 1] ,
we first project the corresponding basis vectors onto the orthogonal complement of the
column space spanned by the regressors. We then normalize the projected basis vectors to
obtain a new set of basis vectors, which are subsequently used in series LRV estimation.
The use of these projected and normalized bases enables us to develop the asymptotic F
and t test theory.

Our approach underscores the flexibility of the series-based method, as it allows us to
design customized basis functions or basis vectors to suit specific needs for asymptotically
pivotal inference. In contrast, a kernel-based method lacks such adaptability and requires
the imposition of a restrictive assumption, the so-called full-design condition, to achieve
an asymptotically pivotal limit under fixed-b asymptotics. This point was discovered and
highlighted by Vogelsang and Wagner (2024).

We extend the asymptotic F and t testing framework to cases where the regressors
are endogenous. In a linear cointegration setting, it is well known that the OLS estimator
suffers from a second-order endogeneity bias, complicating asymptotically pivotal inference
(e.g., Phillips and Hansen (1990)). This issue also appears in the polynomial cointegrated
system as studied in Wagner and Hong (2016) and Chan and Wang (2015). Unlike the
fully modified OLS method (e.g., Wagner (2015) and Wagner and Hong (2016)), we use
an approach similar to those proposed by Hwang and Sun (2018), and Pellatt and Sun
(2023), beginning by transforming the augmented homogeneous cointegrated regression
using orthonormal basis functions.

Following Hwang and Sun (2018), we estimate the parameters by OLS based on a
Transformed and Augmented (TA) regression model. We call the resulting estimator the
TA-OLS estimator. Extending the results of Hwang and Sun (2018) for linear cointegration,
we establish the asymptotic mixed-normality of the TA-OLS estimator. Importantly, this
distribution is free from the second-order endogeneity bias that typically complicates infer-
ence in a cointegration model with endogenous regressors. Under fixed-smoothing asymp-
totics, we show that the test statistics based on the TA-OLS estimator are asymptotically
F -distributed or t-distributed. As in the case of exogeneity, our procedure is particularly
advantageous because critical values from the F and t distributions are readily available
in any standard statistical software. This makes our method practically convenient, espe-
cially when compared to the integrated modified OLS (IM-OLS) method of Vogelsang and
Wagner (2024), where the fixed-b limiting distribution is highly nonstandard, and critical
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values have to be simulated.
As a special case of the asymptotically homogeneous cointegrated setting, Vogelsang

and Wagner (2014) study polynomial cointegrated regressions and impose the full-design
condition to achieve asymptotically pivotal fixed-b inference. The full-design condition
requires the inclusion of all possible transforms of the underlying I(1) processes, up to the
highest order specified in the polynomial cointegration equation, which can be restrictive in
practical applications. In contrast, our approach does not rely on the full-design condition,
yet it still achieves standard F and t limits under fixed-K asymptotics. This flexibility is
a key advantage of our method, as it does not restrict model specifications for the purpose
of asymptotic development. This is especially appealing when certain higher-order terms
are unnecessary in a polynomial cointegrated system.

In a Monte Carlo simulation study, we compare the finite-sample performance of our
asymptotic F test in polynomial cointegration regressions to that of the existing tests based
on the fully modified OLS (FM-OLS) and IM-OLS. In both exogenous and endogenous
cases, the proposed F tests outperform competing tests. In particular, for the endoge-
nous case, the F test is shown to be more accurate in size than FM-OLS with chi-square
critical values and IM-OLS with non-standard critical values. The improved performance
is especially evident when the degree of serial autocorrelation is strong. These findings
are consistent with previous studies, such as Hwang and Sun (2018) and Pellatt and Sun
(2023), which support the accuracy of the F test in linear cointegration regressions.

We use the TA-OLS method to estimate the carbon Kuznets curve (CKC) and employ
the proposed F and t tests for inferences. The CKC examines how per capita CO2 emissions
in a country depend on its per capita GDP over time. Our method is particularly suited
for this application, as a quadratic function of the logarithm of per capita GDP, which
is widely regarded as a unit root process, is an integral part of the model. In addition,
the logarithm of per capita GDP is likely to be endogenous. This setting aligns perfectly
with the design of our method under endogeneity, which enables us to test the inverted
U-shaped relationship between environmental pollution and economic activity with higher
accuracy than existing methods.

As an additional contribution, we extend our method to a more general setting where
the regressors are transformations of fractionally integrated processes. The generalization
of I(1) components to nonstationary fractional processes has been explored in studies such
as Robinson and Hualde (2003) and Hualde and Iacone (2019) in the context of linear
cointegration. However, to the best of our knowledge, no existing studies have applied an
asymptotically homogeneous transformation in this context. By replacing first differencing
with fractional differencing in the TA-OLS regression, we show that the F and t test
theory can be naturally extended to situations where the underlying driving process is a
nonstationary fractional process. Moreover, we introduce a feasible TA-OLS estimation
and testing procedure using a consistent estimator of the true fractional parameter, such
as those proposed by Andrews and Sun (2004) and Shimotsu and Phillips (2005), among
many others. We prove that the estimation error in the fractional parameter estimator does
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not affect our asymptotic theory, and the standard F test and t test remain asymptotically
valid with an estimated fractional parameter. This appears to be the first study to establish
the convenient asymptotic F test and t test in this generalized setting.

Our study contributes to the existing literature by introducing more accurate and re-
liable statistical tests, thereby broadening the scope of econometric analysis in contexts
involving nonlinearity, nonstationarity, and cointegration. Building on foundational works
for linear cointegrated systems, the literature on nonlinear cointegration has expanded to
encompass both parametric and nonparametric approaches; see, for example, Chang et al.
(2001), Saikkonen and Choi (2004),Wang and Phillips (2009), Chan and Wang (2015), and
Dong et al. (2021). In particular, the asymptotically homogeneous cointegrated system
considered in our paper includes finite-order polynomials as special cases. Consequently,
our framework encompasses the cointegrating polynomial regressions of Wagner and Hong
(2016) and Vogelsang and Wagner (2024). Transforming nonstationary variables using
basis functions has also been adopted in recent cointegration literature (e.g., Müller and
Watson (2013), Hwang and Sun (2018), and Sun et al. (2024)). Our approach and findings
are expected to resonate with empirical researchers in macroeconomics and finance who
frequently encounter nonlinear dynamic relationships among integrated variables.

Finally, we note that the TA-OLS method presented in this paper, along with that
of Hwang and Sun (2018), is closely related to the high-dimensional trend instrumental
variable (TIV) method, originally proposed by Phillips (2014), and further studied recently
in Phillips and Kheifets (2024) and Sun et al. (2024). In the linear cointegration setting,
Hwang and Sun (2018) show that under the large-K asymptotics, the TIV estimator and
the TA-OLS estimator are asymptotically equivalent, and both are semi-parametrically
efficient; see also Sun et al. (2024). While homogeneous cointegrated systems with more
general nonstationary fractionally integrated processes have not yet been explored from
the perspective of the TIV method, our fixed-K asymptotic framework, combined with
easy-to-use F and t tests, is expected to provide more accurate approximations for the
TIV method as well.

The rest of this paper is organized as follows. Section 2 introduces the asymptotically
homogeneous cointegrated system and develops asymptotic F and t tests under exogeneity.
Section 3 addresses the case with endogeneity and establishes the asymptotic properties of
the TA-OLS estimator and the corresponding F and t tests. Sections 4 and 5 present Monte
Carlo simulation results and an empirical application to real-world data, respectively. Sec-
tion 6 extends the results in Section 3 to the case with nonstationary, fractionally integrated
regressors. The final section concludes and outlines directions for future research.

We use the following notation throughout the paper: For any symmetric and positive
definite matrix Ω, Ω1/2 is defined to be a symmetric and positive definite matrix such that

Ω1/2Ω1/2 = Ω, unless stated otherwise. We define Ω−1/2 :=
(
Ω1/2

)−1
and let O be a matrix

of zeros with dimensions that may change from each occurrence. For a matrix M with dM
rows, PM is defined to be M(M ′M)−1M ′ and QM is defined to be IdM −PM . N represents
the set of all positive integers (natural numbers), and [a] denotes the greatest integer less
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than or equal to a (the floor function). The notation “⇒” indicates the weak convergence
of a sequence of stochastic processes and random variables.

2 Cointegrated Homogeneous Regression under Exo-

geneity

We begin by describing the process Xt that drives the regressors in the cointegration model.
We assume that Xt = (X1,t, X2,t, . . . , Xdx,t)

′ follows a dx-dimensional unit root process (i.e.,
Xt is integrated of order one, I(1)):

Xt = Xt−1 + ux,t

for some stationary I(0) process ux,t ∈ Rdx . Next, we consider the following cointegration
model:

Yt = Z ′
tβ0 + u0,t, (1)

where Yt ∈ R, u0,t ∈ R is a stationary I(0) process with zero mean, and each element of
Zt = (Z1,t, . . . , Zdz ,t)

′ is driven by Xt according to:

Zi,t = fi,0 (t) ·
dx∏
j=1

fi,j (Xj,t) for i ∈ {1, . . . , dz} ,

with fi,0 (·) being a locally Riemann integrable function, and fi,j (·) belonging to the class of
asymptotically homogeneous functions as defined in Park and Phillips (1999). We formalize
the requirements for fi,0 (·) and fi,j (·) as an assumption below.

Assumption 1 (i) fi,0 (·) : R → R is locally Riemann integrable, and for some positive
function κi0 (·) , the following

fi,0 (t) = κi0 (T ) fi,0

(
t

T

)
(1 + o (1))

holds uniformly over t, as T → ∞.
(ii) For j ∈ {1, . . . , dx}, the function fi,j (·) : R → R is asymptotically homogeneous in

the sense that for any λ > 0,

fi,j (λx) = κi,j (λ)Hi,j (x) +Ri,j (λ, x) ,

where κi,j (λ) > 0, Hi,j (x) is locally Riemann integrable, and Ri,j (λ, x) satisfies one of the
following two conditions:

(a) |Ri,j (λ, x)| ≤ ai,j (λ)Pi,j (x) , where limsupλ→∞ai,j (λ) /κi,j (λ) = 0 and Pi,j (x) is
locally Riemann integrable;

(b) |Ri,j (λ, x)| ≤ bi,j (λ)Qi,j (λx) , where limsupλ→∞bi,j (λ) /κi,j (λ) < ∞ and Qi,j (x)
is bounded and vanishes at infinity (i.e., Qi,j (x) → 0 as |x| → ∞).
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Assumption 1(i) ensures that, after appropriate normalization, we can convert the dis-
crete time trend into a continuous time trend. Assumption 1(ii) states that fi,j (λx) is
approximately equal to κi,j (λ)Hi,j (x) , with a remainder that is asymptotically negligible.
For example, each fi,j (·) can be one of the following functions (with parameters that may
vary for each i ∈ {1, . . . , dz} and j ∈ {1, . . . , dx}):

(a) Homogeneous functions, such as xθ with parameter θ > 0, in which case, κ (λ) = λθ

and H (x) = xθ; and sign (x) , in which case, κ (λ) = 1 and H (x) = sign (x) ;

(b) Finite order polynomials, given by xk+ a1x
k−1+ · · ·+ ak with parameters k ∈ N and

(a1, . . . , ak) ∈ Rk, in which case, κ (λ) = λk and H(x) = xk;

(c) The logarithm function log (|x|), in which case, κ (λ) = log(λ) and H (x) = 1;

(d) The cumulative distribution function of any random variable, in which case, κ (λ) = 1
and H(x) = 1 {x ≥ 0} .

Economic applications of polynomial transformations in Examples (a) and (b) can be
found in Chan and Wang (2015) and Vogelsang and Wagner (2024) in the contexts of
estimating carbon Kuznets curves and multifactor translog production functions. The
logarithmic transformation in Example (c) is applied in Bae and De Jong (2007) for money
demand analysis. The application of Example (d) includes smooth transition models,
as considered in Saikkonen and Choi (2004). Remark 4.3 in Park and Phillips (1999)
provides more detailed descriptions of the above asymptotically homogeneous functions.
See also the discussions in the more recent monograph Wang (2015). Additionally, we
note that an intercept can be included in our cointegration model given in (1) by setting
f1,0, f1,1, . . . , f1,dx to be constant functions.

Remark 1 Assumption 1 can be replaced by the following more general multivariate ver-
sion: each Zi,t is an asymptotically homogeneous multivariate transform of the vector
(t′, X ′

t)
′ ∈ Rdx+1, that is, Zi,t takes the form of fi (t,Xt) , where fi (τ,x) is asymptotically

homogeneous in the sense that for any Λ1 ∈ R and Λ2 ∈ R1×dx ,

fi (Λ1τ,Λ2x) = κi (Λ1,Λ2)Hi (τ,x) +Ri (Λ1,Λ2, τ,x) ,

where Ri (Λ1,Λ2, τ,x) satisfies either (a)

|Ri (Λ1,Λ2, τ,x)| ≤ ai (Λ1,Λ2)Pi (τ,x) ,

where limmin(Λ1,∥Λ2∥)→0ai (Λ1,Λ2) /κi (Λ1,Λ2) = 0 and Pi (τ,x) is locally Riemann inte-
grable; or (b)

|Ri (Λ1,Λ2, τ,x)| ≤ bi (Λ1,Λ2)Qi (Λ1τ,Λ2x) ,

where limmin(Λ1,∥Λ2∥)→0bi (Λ1,Λ2) /κi (Λ1,Λ2) < ∞ and Qi (τ,x) is bounded and vanishes
at infinity (i.e., Qi (τ,x) → 0 as min (|τ | , ∥x∥) → ∞).
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With some modifications of DT and Z(·) defined later, our asymptotic theory still holds
under the above assumption; but for simplicity, we maintain Assumption 1.

We turn to the assumption we impose on the initial value X0 and the error processes.
Denote the long-run variance of ut = (u′0,t, u

′
x,t)

′ and its submatrices by

Ω =
∞∑

j=−∞

Eutu
′
t−j =

 Ω00
1×1

Ω0x
1×dx

Ωx0
dx×1

Ωxx
dx×dx

 .

Assumption 2 (i) X0 = op(
√
T ).

(ii) The Functional Central Limit Theorem (FCLT) holds:

1√
T

[T ·]∑
t=1

ut =
1√
T

[T ·]∑
t=1

(
u0,t
ux,t

)
⇒ B(·) =

(
B0(·)
Bx(·)

)
, (2)

where B(·) := (B′
0(·), B′

x(·))′ is a (dx + 1)-dimensional Brownian process with a positive
definite variance Ω.

(iii) {u0,t} := {u0,t : t ∈ N} is independent of {ux,t} := {ux,t : t ∈ N} .

Assumption 2(i) ensures that the initial value of the I(1) process Xt will not affect our
asymptotics. Assumption 2(ii) holds by the standard FCLT under well-known primitive
conditions. The positive definiteness of Ω ensures that its submatrix Ωxx is also positive
definite, thereby implying that Xt is a full-rank I(1) process.

Assumption 2(iii) assumes that {u0,t} is independent of {ux,t}, so that Ω0x = 0. We
will address the case of dependence in the next section. Under Assumption 2(iii), we can
represent B(·) as

B(·) =

(
Ω

1/2
00 O

O Ω
1/2
xx

)(
W0 (·)
Wx(·)

)
,

where W (·) := (W ′
0(·),W ′

x(·))′ is a (dx + 1)-dimensional standard Brownian. Note that

B0(·) = Ω
1/2
00 W (·) is a one-dimensional process, which corresponds to the weak limit of the

process T−1/2
∑[T ·]

t=1 u0,t.
When each element of Zt is an I(1) variable, with no transformation applied to Xt, the

model reduces to the triangular representation of a linear cointegration system as considered
in Phillips (1991). When each element of Zt takes the monomial form tki,0

∏dx
j=1X

ki,j
j,t , the

model corresponds to the cointegrating polynomial regressions considered, for example,
by Wagner (2015), Wagner and Hong (2016), Wagner et al. (2020), de Jong and Wagner
(2022), Stypka et al. (2024), and Vogelsang and Wagner (2024). Our model is linear in
parameters and, hence, easier to estimate than the nonlinear cointegration models that are
nonlinear in parameters (cf. Wang (2015)).
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Under Assumptions 1 and 2, we have, for DT = diag((ν1(
√
T ), . . . , νdz(

√
T ))′) with

νi(λ) := κi,0 (λ
2) ·
∏dx

j=1 κi,j (λ),

D−1
T Z[Tτ ] ⇒ Z (τ) , (3)

where Z (τ) is a vector of continuous-time processes defined on τ ∈ [0, 1]. Specifically, the
conditions outlined in Assumptions 1 and 2, along with the continuous mapping theorem,
allow us to establish the joint weak convergence of the vector-valued process D−1

T Z[Tτ ] =
D−1
T (Z1,[Tτ ], . . . , Zdz ,[Tτ ])

′. The marginal convergence for each component is given by

1

νi(
√
T )
Zi,[Tτ ] =

1

νi(
√
T )

(
κi,0 (T )Hi,0

(
[Tτ ]

T

)
·
dx∏
j=1

κi,j(
√
T )Hi,j

(
Xj,[Tτ ]√

T

))
+ op(1)

= Hi,0

(
[Tτ ]

T

)
·

(
dx∏
j=1

Hi,j

(
Xj,[Tτ ]√

T

))
+ op(1)

⇒ Hi,0(τ) ·

(
dx∏
j=1

Hi,j(Bx,j(τ))

)
:= Hi(τ, Bx(τ)),

for i ∈ {1, . . . , dz}, whereBx,j(·) is the j-th component of the vectorBx(·) = (Bx,1(·), . . . , Bx,dx(·))′.
When the i-th element Zi,t of Zt takes the monomial form tki,0(

∏dx
j=1X

ki,j
j,t ), we have

fi,0(t) = tki,0 , Hi,0 (t) = tki,0 , κi,0 (T ) = T ki,0 ;

fi,j(x) = xki,j , Hi,j (x) = xki,j , κi,j(T
1/2) = T ki,j/2, for j ∈ {1, . . . , dx},

so νi(
√
T ) = T ℓi with ℓi = ki,0 +(ki,1 + . . .+ ki,dx)/2, and the weak limit of νi(

√
T )−1Zi,[Tτ ]

can be written as

Hi(τ, Bx(τ)) = τ ki,0

(
dx∏
j=1

(Bx,j(τ))
ki,j

)
.

Given the observations {Xt, Yt}Tt=1, we estimate β0 by the OLS estimator:

β̂OLS =

(
T∑
t=1

ZtZ
′
t

)−1( T∑
t=1

ZtYt

)
= (Z ′Z)

−1
Z ′Y,

where Z = (Z1, . . . , ZT )
′ and Y = (Y1, . . . , YT )

′. Using the continuous mapping theorem
and other standard arguments, we have:

√
TDT (β̂OLS − β0) =

(
1

T

T∑
t=1

(
D−1
T Zt

) (
D−1
T Zt

)′)−1( T∑
t=1

(
D−1
T Zt

) u0,t√
T

)

⇒ Ω
1/2
00

[∫ 1

0

Z (τ)Z (τ)′ dτ

]−1 ∫ 1

0

Z (τ) dW0 (τ) ,
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provided that
∫ 1

0
Z (τ)Z (τ)′ dτ is positive definite almost surely.

Given some p×dz matrix R = [R (i, j)], where R (i, j) represents the (i, j)-th component
of R, and a p× 1 vector r, we are interested in testing:

H0 : Rβ0 = r against H1 : Rβ0 ̸= r.

When p = 1, we may be interested in testing a one-sided alternative. For example, we may
test

H0 : Rβ0 = r against H1 : Rβ0 > r.

Different elements of Rβ̂ may converge at different rates. We assume that there exists a
p × p diagonal matrix D̃T such that limT→∞ D̃TRD

−1
T = A for a matrix A ∈ Rp×dz with

full row rank p. Then, the rate of convergence of Rβ̂ to Rβ0 is given by (D̃T

√
T )−1, as

D̃T

√
TR

(
β̂OLS − β0

)
=
(
D̃TRD

−1
T

)( 1

T

T∑
t=1

(
D−1
T Zt

) (
D−1
T Zt

)′)−1( T∑
t=1

(
D−1
T Zt

) u0,t√
T

)

⇒ Ω
1/2
00 A

[∫ 1

0

Z (τ)Z (τ)′ dτ

]−1 ∫ 1

0

Z (τ) dW0 (τ)

:= Ω
1/2
00

∫ 1

0

Z∗ (τ) dW0 (τ) , (4)

where

Z∗ (τ) = A

[∫ 1

0

Z (τ)Z (τ)′ dτ

]−1

Z (τ) .

The above asymptotic theory forms the basis for testingH0 againstH1, but we still need
to estimate the long-run variance Ω00. Here we employ a series method for this estimation.
For a set of K basis functions {ϕi (·)}Ki=1 in L2 [0, 1], with K as the tuning parameter, the
series long-run variance estimator, e.g., Phillips (2005), Müller (2007), and Sun (2013),
takes the form of

Ω̃00 =
1

KT

K∑
i=1

(ϕ′
iû)

2 =
1

K

K∑
i=1

[
1√
T
ϕi

(
t

T

)
û0t

]2
,

where û0 = (û0,t, . . . , û0,T )
′ = Y − Zβ̂OLS is the vector of the OLS residuals and ϕi =

(ϕi (1/T ) , . . . , ϕi (T/T ))
′ is the basis vector corresponding to the basis function ϕi (·) .
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For each i ∈ {1, . . . , K}, we have, for u0 = (u0,1, . . . , u0,T )
′ :

1√
T
ϕ′
iû0

=
1√
T
ϕ′
iQZu0 =

1√
T

(
ϕ′
iu0 − ϕ′

iZ (Z ′Z)
−1
Z ′u0

)
⇒ Ω

1/2
00

∫ 1

0

ϕi (τ) dW0 (τ)−
(∫ 1

0

ϕi (s)Z (s)′ ds

)(∫ 1

0

Z (s)Z (s)′ ds

)−1 ∫ 1

0

Z (τ) dW0 (τ)

= Ω
1/2
00

∫ 1

0

ϕ̃i (τ) dW0 (τ) , (5)

where

ϕ̃i (·) = ϕi (·)−
(∫ 1

0

ϕi (s)Z (s)′ ds

)(∫ 1

0

Z (s)Z (s)′ ds

)−1

Z (·) . (6)

In the linear cointegration setting with Zt = (1, X ′
t)

′, Sun (2023) shows that ϕ̃i (·) in
(5) does not depend on any nuisance parameters, such as Ωxx. As a result, the long-run
variance estimator Ω̃00/Ω00 weakly converges to a random variable that does not depend
on any unknown parameters under fixed-K asymptotics, making the Wald inference based
on Ω̃00 asymptotically pivotal. However, due to the non-standard limiting distribution,
simulated critical values are necessary.

Although asymptotically pivotal inference applies in the linear cointegrated case, pivotal
inference based on Ω̃00 cannot be directly extended to cointegrated nonlinear homogeneous
regressions. This is because nuisance parameters that govern the limiting process Z (·)
will retain their effect in ϕ̃i (·) in the nonlinear case, which implies that Ω̃00/Ω00 is not
asymptotically pivotal. Consider, for example, dx = 2 and Zt = (X2

1t, X
2
2t) . We have the

following representation of Z (·), which is also considered in Vogelsang and Wagner (2024):

Z (·) =
(
B2
x,1(·)

B2
x,2(·)

)
=

(
ϖ2

11 ϖ2
12 2ϖ11ϖ12

0 ϖ2
22 0

)
︸ ︷︷ ︸

:=Γ

 W 2
x,1(·)

W 2
x,2(·)

Wx,1(·)Wx,2(·)


︸ ︷︷ ︸

:=Wx

= ΓWx(·) (7)

where ϖ11, ϖ12, and ϖ22 are defined according to

Ω1/2
xx =

[
ϖ11 ϖ12

O ϖ22

]
and Wx is free from any nuisance parameter. Let Γ = UDV ′, for U ∈ R2×2 and V =
(V1,V2) ∈ R3×2, be the singular value decomposition of Γ. Some simple algebra shows that

ϕ̃i (·) = ϕi (·)−
(∫ 1

0

ϕi (s) [V ′Wx (s)] ds

)(∫ 1

0

[V ′Wx (s)] [V ′Wx (s)]
′
ds

)−1

[V ′Wx (·)] ,
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where

V ′Wx (·) =
[
V ′
1Wx (·)

V ′
2Wx (·)

]
and V1 ∈ R3 and V2 ∈ R3 are orthonormal column vectors. This representation shows that
ϕ̃i (·) is a function of the orthogonal projection of Wx (·) onto the proper subspace spanned
by V1 and V2. The orientation of this subspace depends on V . This is important because
the distribution of Wx (·) is not rotation-invariant, so the distribution of V ′Wx (·) depends
on V , which in turn depends on Γ and Ωxx. Since V is not a square matrix, there is no
way for its effects on the second term in the definition of ϕ̃i (·) to cancel out. Therefore,
the distribution of ϕ̃i (·) depends on Ωxx, and as a result, Ω̃00/Ω00 is not asymptotically
pivotal.

To enable asymptotically pivotal fixed-b asymptotic inference in polynomial cointe-
grated regressions, Vogelsang and Wagner (2024) impose the so-called full-design condition,
which requires the inclusion of all monomials of {Xjt} in Zt. In the example above, this
requires Zt = (X2

1t, X
2
2t, X1tX2t), so that both quadratic terms and the cross-product are

included in the regression, and Γ, defined in (7), becomes a square matrix. The full-design
condition guarantees a one-to-one mapping between Z(·) and the vector process Wx in-
volving all monomials of {Wx,j(·)}; see (7). This ensures that the effects of Γ (or V) cancel
out and that ϕ̃i (·) does not depend on nuisance parameters. However, the full-design con-
dition can be restrictive when a more parsimonious specification is desired, or when some
monomials of {Xjt} have no effect on Yt. Our aim is to develop an asymptotically pivotal
inference method that does not impose the restrictive full-design condition while achieving
standard F and t limits under fixed-K asymptotics.

The idea is to transform any candidate basis functions in an initial step in order to
“preempt” the estimation error so that the long-run variance estimator is invariant to the
use of the estimated û0 or the true u0. This, combined with an orthonormalization step,
yields a new set of basis vectors that can be used to construct a new LRV estimator Ω̂00,
ensuring the asymptotic pivotality Ω̂00/Ω00.

We now describe the details. For a given set of basis functions {ϕi (·)}Ki=1 and the

corresponding basis vectors {ϕi}
K
i=1 , we let Φ = (ϕ1, . . . ,ϕK) ∈ RT×K be the matrix that

concatenates {ϕi}
K
i=1. Projecting each column of Φ onto the orthogonal complement of

the space spanned by the columns of Z yields the new matrix Φ̃ = QZΦ := (ϕ̃1, . . . , ϕ̃K).
Normalizing Φ̃ yields

Φ̃∗ = Φ̃(Φ̃′Φ̃)−1/2 = (ϕ̃1, . . . , ϕ̃K)(Φ̃
′Φ̃)−1/2.

This step may also be referred to as an orthonormalization step, as Φ̃∗′Φ̃∗ = IK and
so Φ̃∗ is an orthogonal matrix. Let ϕ̃

∗
i be the i-th column of Φ̃∗; then we can write

Φ̃∗ = (ϕ̃
∗
1, . . . , ϕ̃

∗
K) = QZΦ (Φ′QZΦ)

−1/2 .We then replace the original basis vectors {ϕi}
K
i=1

used in Ω̃00 with the transformed basis vectors {ϕ̃∗
i }Ki=1. This yields the following estimator

12



for Ω00 :

Ω̂00 =
1

K

K∑
i=1

[
(ϕ̃

∗
i )

′û0

]2
. (8)

In a matrix form, Ω̂00 can be equivalently expressed as

Ω̂00 =
1

K
(û′0QZΦ) (Φ

′QZΦ)
−1

(Φ′QZ û0) .

In essence, we have transformed the original basis matrix Φ into the new basis matrix
QZΦ (Φ′QZΦ)

−1/2 and used the transformed basis vectors in constructing the long-run
variance estimator.

Based on Ω̂00, we construct the Wald statistic:

FT =
1

pΩ̂00

(
Rβ̂OLS − r

)′ [
R (Z ′Z)

−1
R′
]−1 (

Rβ̂OLS − r
)
. (9)

When p = 1, we construct the t-statistic:

tT =
Rβ̂OLS − r√

Ω̂00R (Z ′Z)−1R′
.

To derive the asymptotic distributions of FT and tT , we impose the following assumptions
on the stochastic process Z(·) in (3), the basis functions {ϕi (·)}Ki=1 , and the corresponding

transformed (random) basis functions {ϕ̃i (·)}Ki=1.

Assumption 3 The stochastic process Z(·) satisfies the condition that
∫ 1

0
Z (τ)Z (τ)′ dτ

is positive definite almost surely.

Assumption 4 (i) For each i ∈ {1, . . . , K}, ϕi (·) is continuously differentiable. (ii) For

SΦ̃ ∈ RK×K with the (i, j)-th element given by SΦ̃(i, j) :=
∫ 1

0
ϕ̃i (τ) ϕ̃j(τ)dτ, SΦ̃ is of the

full rank K almost surely.

Theorem 1 Let Assumptions 1–4 hold. Assume further that limT→∞ D̃TRD
−1
T is of full

row rank p. Then, for a fixed K as T → ∞, we have that

FT ⇒ Fp,K and tT ⇒ tK under H0 : Rβ0 = r,

where Fp,K is the standard F distribution with degrees of freedom (p,K), and tK is the
standard t distribution with degrees of freedom K.
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Remark 2 Define [ϕ̃∗
1 (·) , . . . , ϕ̃∗

K (·)] = [ϕ̃1 (·) , . . . , ϕ̃K (·)]S−1/2

Φ̃
. Then, Ω̂00 is a series LRV

estimator using the new set of basis functions {ϕ̃∗
i (·)}Ki=1. As in Sun (2023), each ϕ̃∗

i (·) is a
random function, as it depends on the trajectory of Z (·) , which is a random element. Note
that Ω̂00 = (û′0Φ) (Φ

′QZΦ)
−1 (Φ′û0) /K and Ω̃00 = (û′0Φ) (Φ

′û0) /K have similar forms and
can both be written as (û′0Φ)G (Φ′û0) /K for a matrix G, which is equal to either (Φ′QZΦ)

−1

or IK . Therefore, we may also interpret Ω̂00 as a weighted version of Ω̃00 using (Φ′QZΦ)
−1

as the weighting matrix. The series method to LRV estimation offers flexibility in crafting
the basis functions or reweighting them when necessary. The kernel-based method does not
have such flexibility, and the full-design condition has to be imposed in order to obtain
an asymptotically pivotal limit under the fixed-b asymptotics; see Vogelsang and Wagner
(2024) for more details.

3 Cointegrated Homogeneous Regression under En-

dogeneity

We consider the same model as before:

Yt = α0 + Z ′
tβ0 + u0,t, (10)

Xt = Xt−1 + ux,t.

In the above, we explicitly include an intercept in the model because Xt is now allowed to
be endogenous, and thus it cannot accommodate a deterministic constant regressor. We
allow {u0,t} and {ux,t} to be arbitrarily correlated, in which case their long-run covariance
Ω0x can be a non-zero vector. With a slight abuse of notation, we now let Zt denote the
vector of nonconstant regressors, and let dz be the number of elements in Zt, that is, the
number of non-constant regressors in (10).

We still maintain Assumption 2(ii) but now

Ω1/2 =

[
Ω

1/2
00·x Ω0xΩ

−1/2
xx

O Ω
1/2
xx

]
,

where Ω00·x := Ω00 − Ω0xΩ
−1
xxΩx0, and B (·) can be represented by

B (·) = Ω1/2W (·) =

(
Ω

1/2
00·xW0 (·) + Ω0xΩ

−1/2
xx Wx (·)

Ω
1/2
xx Wx (·)

)
with W0 (·) being independent of Wx (·) . As in the previous section, we assume that
D−1
T Z[Tτ ] ⇒ Z (τ), where Z (τ) satisfies Assumption 3.
Given that Ω0x may not be zero, there may be a long-run correlation between {u0,t}

and {ux,t} . To remove this potential correlation, we perform a long-run projection. Define
the long-run projection coefficient γ0 = Ω−1

xxΩx0 and let

u0·x,t = u0,t − u′x,tγ0.
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We can then represent Yt as

Yt = α0 + Z ′
tβ0 +∆X ′

tγ0 + u0·x,t, (11)

where the long-run variance of u0·x,t is Ω00·x, and the long-run covariance between {u0·x,t}
and {ux,t} is 0.

It is well known in the time series econometrics literature that the OLS estimator based
on (11) still exhibits a second-order endogeneity bias, which hinders asymptotically pivotal
inference. To remove the bias, Phillips and Hansen (1990) introduce the fully modified
method for linear cointegration regressions with I(1) regressors. When the regressor is a
quadratic transform of an I(1) process, Liang et al. (2016) provide an explicit expression
for the second-order bias and use a fully modified approach to conduct inference. Here we
take a different approach and use an estimator that is free of second-order bias.

As in Hwang and Sun (2018), Sun (2023), and Phillips and Kheifets (2024), our esti-
mation method begins by using some basis functions to transform (11). Let {ϕi (·)}∞i=1 be
a set of complete basis functions in L2[0, 1]. For each i ∈ {1, . . . , K}, we define

Vα,i =
1√
T

T∑
t=1

ϕi

(
t

T

)
,

VY,i =
1√
T

T∑
t=1

Ytϕi

(
t

T

)
, VZ,i =

1√
T

T∑
t=1

Ztϕi

(
t

T

)
,

V∆x,i =
1√
T

T∑
t=1

∆Xtϕi

(
t

T

)
, V0·x,i =

1√
T

T∑
t=1

u0·x,tϕi

(
t

T

)
. (12)

We then obtain
VY,i = Vα,iα0 + V ′

Z,iβ0 + V ′
∆x,iγ0 + V0·x,i (13)

for i ∈ {1, . . . , K}. This can be viewed as a cross-sectional regression with K observations.
We assume that K is fixed but sufficiently large so that the number of observations is larger
than the number of regressors (K > dz + dx).

We make the following assumptions on the basis functions, which are identical to the
corresponding assumptions in Hwang and Sun (2018).

Assumption 5 (i) For every i ∈ {1, . . . , K}, ϕi (·) is continuously differentiable. (ii) for

every i ∈ {1, . . . , K}, ϕi (·) satisfies
∫ 1

0
ϕi (τ) dτ = 0. (iii) the functions {ϕi (·)}Ki=1 are

orthonormal in L2[0, 1].

Under Assumption 5(i, ii),

Vα,i =
√
T

∫ 1

0

ϕi(τ)dτ +
√
TO(1/T ) = O(1/

√
T ) = o(1).
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Thus, for i ∈ {1, . . . , K},
VY,i = V ′

Z,iβ0 + V ′
∆x,iγ0 + V α

0·x,i, (14)

where
V α
0·x,i = V0·x,i + Vα,iα0 = V0·x,i + o (1) .

Our estimation and inference will be based on equation (14), treating V α
0·x,i as the regres-

sion error. Following Hwang and Sun (2018), we refer to (14) as the Transformed and
Augmented (TA) regression, and the associated OLS estimator as the Transformed and
Augmented OLS (TA-OLS) estimator, denoted by (β̂TAOLS, γ̂TAOLS).

Define VY = (VY,1, . . . , VY,K)
′ ∈ RK×1, VZ = (VZ,1, . . . , VZ,K)

′ ∈ RK×dz , and similarly
define V∆x ∈ RK×dx and V α

0·x ∈ RK×1. Then, we have

VY = VZβ0 + V∆xγ0 + V α
0·x.

Clearly, the TA-OLS estimator β̂TAOLS of β0 satisfies

β̂TAOLS − β0 = (V ′
ZQV∆x

VZ)
−1
V ′
ZQV∆x

V α
0·x.

Define

ξi ≡
∫ 1

0

ϕi (τ)Z(τ)dτ, ηi ≡
∫ 1

0

ϕi (τ) dBx (τ) , νi ≡
∫ 1

0

ϕi (τ) dW0 (τ) ,

and denote ξ ≡ (ξ1, ξ2, . . . , ξK)
′ ∈ RK×dz , with η ∈ RK×dx and ν ∈ RK×1 defined similarly.

Under Assumptions 1, 2(i, ii), and 5(i, ii), we can use summation by parts, the contin-
uous mapping theorem, and integration by parts to obtain

T−1/2D−1
T VZ ⇒ ξ, V∆x ⇒ η, and V α

0·x ⇒ ν

holds jointly, and this implies that

√
TDT (β̂TAOLS − β0) ⇒ Ω

1/2
00·x (ξ

′Qηξ)
−1
ξ′Qην. (15)

It is important to note that ν, which is a functional of W0 (·) , is independent of ξ and
η, which are functionals of Wx (·). Additionally, the full-rank condition imposed on Ωxx

and Assumption 3, together with K > dz + dx, ensure that ξ′Qηξ is positive definite
almost surely. As a result, conditional on (ξ, η) , the limiting distribution in (15) is normal
with mean zero, and the limiting distribution is mixed normal. There is no second-order
endogeneity bias in the TA-OLS estimator.

To make inferences on Rβ0, we estimate Ω00·x by

Ω̂00·x =
1

K

∥∥∥VY − V ′
Z β̂TAOLS − V ′

∆xγ̂TAOLS

∥∥∥2
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where ∥·∥ denotes the usual Euclidean norm in RK . Based on the above estimator, we
construct the Wald statistic:

F (β̂TAOLS) =
1

pΩ̂00·x

[
Rβ̂TAOLS − r

]′ [
R (V ′

ZQV∆x
VZ)

−1
R′
]−1 [

Rβ̂TAOLS − r
]
, (16)

and the t-statistic when p = 1 :

t(β̂TAOLS) =
Rβ̂TAOLS − r√

Ω̂00·xR (V ′
ZQV∆x

VZ)
−1R′

. (17)

As in the previous section, we assume that there exists a diagonal matrix D̃T ∈ Rp×p such
that limT→∞ D̃TRD

−1
T = A for a matrix A ∈ Rp×dz with full row rank p.

Theorem 2 Let Assumptions 1, 2(i,ii), 3, and 5 hold. Assume further that limT→∞ D̃TRD
−1
T =

A is of full row rank p. Then under the fixed-K asymptotics where K is held fixed as
T → ∞, we have the following:

(i)
√
TDT (β̂TAOLS − β0) ⇒ Ω

1/2
00·x (ξ

′Qηξ)
−1 ξ′Qην, where ν is independent of (ξ, η), and

ν ∼ N(0, IK).
(ii) Under the null hypothesis of H0 : Rβ0 = r, we have that

F ∗(β̂TAOLS) :=
K − dz − dx

K
F (β̂TAOLS) ⇒ Fp,K−dz−dx ;

t∗(β̂TAOLS) :=

√
K − dz − dx

K
t(β̂TAOLS) ⇒ tK−dz−dx for p = 1.

4 Monte Carlo Simulations

We consider the following data generation process (DGP):

Yt = Z ′
tβ0 + u0,t for t ∈ {1, . . . , T}

with

(i): Zt = (1, X1t, X2t, X
2
1t, X

2
2t, X1tX2t)

′; (18)

(ii): Zt = (1, X1t, X2t, X
2
1t, X

2
2t)

′, (19)

where Xt = (X1t, X2t)
′ satisfies Xt = Xt−1 + ux,t and X0 = 0. The I(0) component of the

cointegration model, i.e., ut =
(
u0,t, u

′
x,t

)′
, is generated as follows:

ut = Θut−1 + ϵt, (20)
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where

ϵt =

(
ϵ0,t
ϵx,t

)
∼ i.i.d N (0,Σ) , Θ = ρ · Idx+1, Σ = Jdx+1,dx+1 · φ+ Idx+1 · (1− φ),

dx = 2, and Jp,q is the p × q matrix of ones. The parameter ρ controls the persistence of
individual components in ut ∈ R3 while the parameter φ, which is equal to the pairwise
correlation coefficient between the elements of ut for the above model, characterizes the
degree of endogeneity. We set the values of ρ ∈ {0.05, 0.25, 0.50, 0.75, 0.90}.

For the true coefficients β0 for (i) and (ii), we set them as (0, 10, 10, 0, 0, 0, 0)′ and
(0, 10, 10, 0, 0)′, respectively, so the (unknown) true cointegrating relationship is assumed to
be linear. Without loss of generality, we set the intercept parameter to be zero. Considering
quadratic and interactive specifications for (i) and (ii) in (18) and (19), we test whether the
elements of β0 associated with the nonlinear regressors are jointly zero. The corresponding
null hypotheses are formulated as H0 : Rβ0 = r, where

(i): R = (O3×3, I3×3) ∈ R3×6 with r = (0, 0, 0)′; (21)

(ii): R = (O2×3, I2×2) ∈ R2×5 with r = (0, 0)′. (22)

In the following two subsections, we examine cointegrated regressions with exogenous and
endogenous regressors and evaluate the finite-sample performance of the procedures devel-
oped in Sections 2 and 3. We also compare the finite-sample performance of our methods
with several existing methods in the literature, using a nominal significance level of 5%.

4.1 Cointegrated homogeneous regression with exogenous regres-
sors

This subsection considers the case where the parameter φ equals 0, indicating that there is
no endogeneity in the cointegrated homogeneous regression. Based on the OLS estimator
β̂OLS, the first group of tests, referred to as “OLS-HAC”, employs the following Wald
statistic:

FHAC,T =
1

pΩ̂HAC,00

(
Rβ̂OLS − r

)′ [
R (Z ′Z)

−1
R′
]−1 (

Rβ̂OLS − r
)
,

where Ω̂HAC,00 is the standard kernel estimator for the LRV Ω00 :=
∑∞

j=−∞E[u0,tu0,t−j],
using either the Bartlett or Quadratic Spectral (QS) kernel. The subscript ‘HAC’ on
Ω̂HAC,00 signifies that it is a Heteroskedasticity and Autocorrelation Consistent (HAC)
LRV estimator, which converges to the true LRV Ω00 under the conventional increasing-
smoothing asymptotics. The critical values for the “OLS-HAC” test are from the chi-
squared distributions χ2

p/p with p = 3 and p = 2 for (i) and (ii), respectively.
The second test, referred to as “OLS-HAR”, is the asymptotic F test proposed in

Section 2 for an exogenous cointegrated homogenous regression. The method replaces
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Ω̂HAC,00 by Ω̂00, as given in (8), which is constructed based on the transformed Fourier

basis functions. The Fourier basis functions are given by {
√
2 sin (2πjr) ,

√
2 cos (2πjr)}K/2j=1 ,

assuming K is even. In the literature, an LRV estimator like Ω̂00 is often referred to as a
Heteroskedasticity and Autocorrelation Robust (HAR) LRV estimator when it converges
to a random variable in distribution, as is the case under the fixed-smoothing asymptotics.
For notational symmetry, we will rewrite Ω̂00 as Ω̂HAR,00 from now on.

For both OLS-HAC and OLS-HAR, smoothing parameters are required. The smoothing
parameter for Ω̂HAC,00 is the kernel bandwidth, while the smoothing parameter for Ω̂HAR,00

is the number of (transformed) basis functions. We use data-driven smoothing parameters
for Ω̂HAC,00 and Ω̂HAR,00 that minimize the asymptotic mean squared errors (AMSE), as
developed by Andrews (1991) and Phillips (2005), respectively. In both cases, we apply
a parametric plug-in approach using AR(1) to compute the unknown parameters. See
Section 4 of Sun (2023) for the formulas and implementation details.

Table 1 reports the empirical rejection probabilities of OLS-HAC and OLS-HAR under
the null hypotheses in (21) and (22), using data-dependent smoothing parameter choices.
To conserve space, for OLS-HAC, we report only the results using the QS kernel. In all
our Monte Carlo simulations, we consider two sample sizes, T ∈ {100, 200}, with 10, 000
simulation replications. The results demonstrate that the empirical size distortion of OLS-
HAC with chi-square critical values can be substantially higher than the nominal size level,
namely 0.05. The over-rejection of OLS-HAC is due to neglecting the estimation error
in the LRV estimator Ω̂HAC,00. In contrast, except for cases where the degree of temporal
dependence is high (i.e., when ρ > 0.75), our proposed OLS-HAR test, which uses standard
F critical values, has significantly lower size distortion, with the null rejection probabilities
much closer to the nominal level of 0.05. The results in Table 1 are also consistent with the
numerical findings in Sun (2023), which demonstrate the accuracy of the asymptotic F test
in a different setting. Our results confirm that the asymptotic F test in linear cointegration
regression can be successfully extended to cases where regressors are polynomial functions
of I(1) variables. We also note that our asymptotic F test exhibits appealing finite-sample
performance for testing both (21) and (22), as it allows for flexible polynomial functions
without requiring a full-design condition.

4.2 Cointegrated homogeneous regression with endogenous re-
gressors

This subsection considers the case of an endogenous cointegration regression with φ = 0.75.
We compare the asymptotic F test based on the TA-OLS estimator, which we propose in
Section 3, against existing approaches, including the integrated modified OLS (IM-OLS)
and fully-modified OLS (FM-OLS) methods. We first describe the FM-OLS of Phillips and
Hansen (1990), which has been extended to cointegrated polynomial regression in Wagner
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and Hong (2016). Define the one-sided long-run variance:

∆ =
∞∑
j=0

E[ut−ju
′
t] =

(
∆00 ∆0x

∆x0 ∆xx

)
.

The estimator for ∆ takes the following form:

∆̂ :=

(
∆̂00 ∆̂0x

∆̂x0 ∆̂xx

)
=

1

T

T∑
s=1

T∑
t=s

k

(
|s− t|
BT

)
ûsû

′
t, (23)

where ût =
(
û0,t, u

′
x,t

)′
and û0,t = Yt−Z ′

tβ̂OLS. In the above, k(·) is a kernel function, such as

the Bartlett and QS kernels, andBT is the bandwidth parameter. We partition ∆̂x0 and ∆̂xx

as ∆̂x0 = (∆̂x1,0, ∆̂x2,0)
′ and ∆̂xx = [(∆̂x,x1 , ∆̂x,x2)

′. Also, we define ∆̂+
x0 = (∆̂+

x1,0
, ∆̂+

x2,0
)′ as

∆̂+
x0 = ∆̂x0 − ∆̂xxΩ̂

−1
xx Ω̂x0 =

(
∆̂x1,0 − ∆̂′

x,x1
Ω̂−1
xx Ω̂x0

∆̂x2,0 − ∆̂′
x,x2

Ω̂−1
xx Ω̂x0

)
,

where

Ω̂ =

(
Ω̂00 Ω̂0x

Ω̂x0 Ω̂xx

)
:=

1

T

T∑
s=1

T∑
t=1

k

(
|s− t|
BT

)
ûsû

′
t

is the kernel LRV estimator.
In the context of our DGPs, the FM-OLS method in Wagner and Hong (2016) covers

only case (ii) given in (19), where only the quadratic terms of X1t and X2t, but not their
interaction, are included in Zt. In this case, the FM-OLS estimator is

β̂FM-OLS = (Z ′Z)−1(Z ′Y + − A∗),

with Y + = (Y +
1 , . . . , Y

+
T )′ and Y +

t = Yt −∆X ′
tΩ̂

−1
xx Ω̂x0. The additive correction factor A∗

is given by

A∗ =

[
0
M∗

]
∈ R5 and M∗ =


T ∆̂+

x1,0

T ∆̂+
x2,0(

2
∑T

t=1X1t

)
· ∆̂+

x1,0(
2
∑T

t=1X2t

)
· ∆̂+

x2,0

 ∈ R4,

The corresponding FM-OLS Wald statistic is defined as

WFM-OLS :=
(
Rβ̂FM-OLS − r

)′ [
σ̂2
0·xR(Z

′Z)−1R′]−1
(
Rβ̂FM-OLS − r

)
,

where σ̂2
0·x := Ω̂00 − Ω̂0xΩ̂xxΩ̂x0. Wagner and Hong (2016) show that WFM-OLS is asymp-

totically chi-squared distributed with p degrees of freedom. A key assumption behind this
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chi-squared limiting result, similar to Phillips and Hansen (1990), is that the amount of
smoothing increases to infinity as the sample size grows (i.e., BT grows with the sample
size but at a slower rate). Consequently, Ω̂, ∆̂, and σ̂2

0·x converge to their respective true
values Ω, ∆, and σ2

0·x, regardless of the choice of the kernel function or bandwidth BT used
in the nonparametric estimators.

To describe the IM-OLS method in Vogelsang and Wagner (2024), we let SOt :=∑t
j=1Oj, which represents the integration Oj up to period t, and SO := [SO1 , . . . , S

O
T ]

′.

Also, denote S̃Zt := [(SZt )
′, X ′

t]
′ and S̃Z = [S̃Z1 , . . . , S̃

Z
T ]

′ = [SZ , X]. The IM-OLS estimator
of θ0 = (β′

0, γ
′
0)

′ is then defined as

θ̂IM-OLS = [(S̃Z)′S̃Z ]−1(S̃Z)′SY .

Let R̃ = [R, O] ∈ Rp×(dz+dx). The IM-OLS Wald statistic is then formulated as

WIM-OLS :=
(
R̃θ̂IM-OLS − r

)′ [
R̃V̂IM,MR̃

′
]−1 (

R̃θ̂IM-OLS − r
)
,

where
V̂IM,M = σ̂2

0·x,M · [(S̃Z)′S̃Z ]−1C ′C[(S̃Z)′S̃Z ]−1

with C := [c1, . . . , cT ]
′, ct := SS̃

Z

T − SS̃
Z

t−1, S
S̃Z

t :=
∑t

j=1 S̃
Z
j for t ∈ {1, . . . , T} and SS̃

Z

0 = 0.

The estimator σ̂2
0·x,M is constructed as

σ̂2
0·x,M =

1

T

T∑
τ=2

T∑
t=2

k

(
|τ − t|
BT

)
∆Ŝuτ,M∆Ŝ

u
t,M,

where BT = bT for some b ∈ (0, 1], ∆Ŝut,M = Ŝut,M − Ŝut−1,M, and Ŝ
u
t,M is a modification of

the IM-OLS residual Ŝut := SYt − θ̂′IM-OLSS̃
Z
t . The modification is required to obtain the

asymptotically pivotal fixed-b limiting distribution of WIM-OLS. See Vogelsang and Wagner
(2024) for the detailed formulation of the modified residual Ŝut,M. The non-standard fixed-b
critical values are simulated by extending the algorithm in Hwang and Vogelsang (2024) to
the cointegrated polynomial regression setting. It is noteworthy that the fixed-b inference
using IM-OLS imposes a full-design condition to establish the asymptotically pivotal fixed-b
limit of WIM-OLS. Thus, the application of WIM-OLS rules out case (ii) in (19).

In both FM-OLS and IM-OLS, we use the data-driven values of BT , adopting the
formulas from Andrews (1991). Similar to the exogenous case, the unknown parameters
in the data-driven formulas are estimated using the plug-in method, with VAR(1) serving
as the approximating model for {ût = (û0t,∆x

′
t)

′}. For the TA-OLS method, we apply the
same approximating model for {ût} and implement the data-driven smoothing parameter
K.

Table 2 reports the empirical rejection probabilities for IM-OLS, FM-OLS, and TA-OLS
under the null. It is clear that for all values of ρ and sample sizes T ∈ {100, 200}, our
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proposed F test based on TA-OLS outperforms the tests based on FM-OLS and IM-OLS,
particularly when ρ is greater than 0.50. These findings are consistent with previous stud-
ies, such as Pellatt and Sun (2023) and Hwang and Vogelsang (2024), which support the
accuracy of the F test based on the TA-OLS estimator in linear cointegration regressions.
In fact, the results in Table 2 indicate that combining a data-driven smoothing parameter
with F critical values enhances the size accuracy of the TA-OLS method for cointegrated
homogeneous regressions. Practically, our TA-OLS framework with endogenous I(1) vari-
ables does not require assumptions about how to specify the regressor vector Zt, which
contrasts with the existing FM-OLS and IM-OLS methods.

5 Empirical Application to Carbon Kuznets Curve

In this section, we apply the TA-OLS method developed in 3 to real data and compare it
with existing methods for a quadratic cointegration system under endogeneity.

We examine the long-run relationship between each country’s per capita CO2 emissions
and per capita GDP. The carbon Kuznets curve (CKC) hypothesis suggests an inverted
U-shaped relationship between these two variables, observed across time for each country
(e.g., Holtz-Eakin and Selden (1995)). To test this hypothesis, we consider the model:

log(et) = α0 + β0,1 log(xt) + β0,2(log(xt))
2 + u0,t (24)

for t ∈ {1, . . . , T}, where et and xt denote the per capita CO2 emissions and the per capita
GDP in period t, respectively, and u0,t is an I(0) error term, which is potentially corre-
lated with the (log) per capita GDP. The specification in (24) follows the same quadratic
formulation as in Chan and Wang (2015), which uses a least squares (LS) method. While
the LS approach in Chan and Wang (2015) becomes the nonlinear least squares when the
cointegrated system is nonlinear in parameters, we note that their LS approach applied
to (24) is equivalent to the OLS, as the model is linear in parameters, with log(xt) and
(log(xt))

2 as the regressors. Chan and Wang (2015) simulate the non-standard limiting
distribution of the OLS estimator based on consistent estimators of the LRV and half-LRV
of the I(0) components of the cointegrated system.

Since the logarithm of per capita GDP is widely known to exhibit nonstationary behav-
ior over time, the issue addressed in this paper becomes relevant when applying a quadratic
transformation to the logarithm of per capita GDP. Wagner (2015) and Chan and Wang
(2015) provide detailed statistical evidence on the nonstationary I(1) properties of log(et)
and log(xt) in (24). These papers also investigate the CKC hypothesis, using time-domain
methods such as FM-OLS and LS. Our TA-OLS method, combined with Fourier basis func-
tions for a fixed-K specification, estimates the cointegrating vector by focusing on only K
low-frequency components of the underlying time series. In this sense, our approach closely
aligns with the empirical questions posited by the CKC hypothesis regarding the nonlinear
long-run relationship between the two I(1) variables.
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Following Chan and Wang (2015), we analyze 13 early industrialized countries over the
post World War II period from 1951 to 2008. The CO2 emission data are sourced from the
Carbon Dioxide Information Analysis Center (Boden et al. (2010))1. For per capita GDP,
we use data from Maddison (2003), adjusted to 1990 Geary-Khamis dollars.2 The list of
country names and their codes is summarized in Table 3. Figure 1 plots the logarithm of
per capita CO2 against the logarithm of per capita GDP for selected countries: France,
Germany, UK, and USA.

In our application of the TA-OLS method, the choice of K is necessary. Given the
limited time span of 58 years of data, we use a fixed K ∈ {8, 12} instead of a data-
driven approach. These choices align with recent HAR literature using low-frequency
transformation techniques, which recommend selecting K values that reflect business cycle
frequencies. Hwang and Sun (2018) also show favorable finite-sample performance with
these K choices in linear cointegration regressions. To save space, we report only the
results with K = 12, as the results with K = 8 yield similar qualitative and quantitative
implications.

In addition to the TA-OLS method, we present estimation results for the parameters
(β0,1, β0,2)

′ and their asymptotic confidence intervals using the LS from Chan and Wang
(2015) and the FM-OLS from Wagner (2015) and Wagner and Hong (2016). The FM-OLS
uses the QS kernel with AMSE-based data-driven bandwidth selection method in Andrews
(1991).

The results are presented in Figures 2 and 3 and Tables 4–7. The figures and tables
show that all three methods – TA-OLS, FM-OLS, and LS – indicate the presence of a
significant nonlinear inverted U-shaped cointegration relationship between log(per capita
CO2 emissions) and log(per capita GDP) for most countries. These findings are supported
by a highly significant negative coefficient for the quadratic term (β0,2). Therefore, our
empirical analysis confirms Chan and Wang (2015)’s finding, which provides strong evi-
dence of inverted U-shaped patterns for the selected 13 countries in the post World War
II period, from 1951 to 2008.

While the coefficient estimates from all three methods indicate statistically significant
non-zero coefficients, the results in Table 4 show that in most countries, the implied turn-
ing points, calculated as exp(−β̂0,1/(2β̂0,2)), based on TA-OLS estimates are lower than
those obtained using the LS and FM-OLS approaches. Specifically, with the exception
of Belgium, France, and Italy, the turning points calculated using TA-OLS estimates are
lower than those from FM-OLS estimates, ranging from $48 to $2,668, and lower than
those from LS estimates, ranging from $60 to $6,970.

Our results in Tables 5–7 and Figures 2 and 3 also show that the confidence intervals
for the linear cointegration coefficient from the FM-OLS and LS methods are substantially
narrower than those from the TA-OLS method for all countries. These findings can be

1https://www.osti.gov/biblio/1389324
2The data are available from Angus Maddison’s archived website:

https://www.rug.nl/ggdc/historicaldevelopment/maddison/
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attributed to the fact that both the LS method from Chan and Wang (2015) and the
FM-OLS method assume the consistency of nonparametric estimators of the nuisance pa-
rameters, such as the LRV and half LRV. Consequently, their confidence intervals may fail
to account for significant variability in parameter estimates in finite samples. In contrast,
our TA-OLS procedure, along with the corresponding confidence intervals derived from
fixed-K asymptotics, indicates that estimation uncertainty can be substantial in the CKC
analysis when long-run endogeneity and serial dependence of an unknown form are present.

6 Extension to Fractionally Integrated Regressors

This section explores how our TA-OLS method can be extended to a more general homoge-
neous cointegration setting, where the regressors are driven by nonstationary, fractionally
integrated processes.

Let L be the lag operator and define ∆ = (1− L) . We assume that each component
Xi,t of Xt now follows a fractional process of the form:

∆δ0Xi,t = ux,i,t, (25)

for i ∈ {1, . . . , dx}, where δ0 ≥ 1/2, ux,i,t = 0 for all t ≤ 0, and for t > 0, ux,i,t is
stationary with zero mean and continuous and positive spectrum fux,i(λ) : [−π, π] → R.
This formulation corresponds to a Type II fractional process, commonly used to model
a nonstationary fractional process in econometrics (see Marinucci and Robinson (1999)).
Expanding the binomial ∆δ0 in (25) yields the form:

t∑
j=0

aj (δ0)Xi,t−j = ux,i,t,

where aj (δ) is given by

aj (δ) =
Γ (j − δ)

Γ (−δ) Γ(1 + j)
,

and Γ(·) is the gamma function: Γ(m) =
∫∞
0
hm−1e−hdh such that Γ(m) = ∞ for m =

0,−1,−2, . . . , and Γ (0) /Γ (0) = 1. Equivalently, we define Xi,t as

Xi,t = ∆−δ0ux,i,t =
t∑

j=0

aj (−δ0)ux,i,t−j. (26)

For expositional simplicity, we have assumed above that all elements of Xt share the same
fractional parameter δ0, but our theory can be generalized to accommodate different frac-
tional parameters for each component of Xt.

When δ0 = 1, we have aj (−δ0) = 1 for all j, and (26) simplifies to Xi,t =
∑t

j=0 ux,i,t−j,
so that Xi,t = Xi,t−1 + ux,i,t with the initial value Xi,0 = 0. In this case, Xi,t reduces to
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the I(1) process considered in previous sections. Similarly, when δ0 is equal to any other
positive integer, Xi,t follows the commonly defined I(δ0) process with Xi,0 = 0. Therefore,
within the framework of Type II fractional processes, we have a unified definition of an I(δ0)
process for any δ0 ∈ R+, but our focus of interest is on the case where Xt is nonstationary,
so we restrict δ0 ≥ 1/2.

Taking an asymptotically homogenous transform of Xt = (X1,t, . . . , Xdx,t)
′ yields Zt.

We consider the model:
Yt = α0 + Z ′

tβ0 + u0,t, (27)

for t ∈ {1, . . . , T}, where u0,t is a stationary I(0) process with zero mean and a continuous,
positive spectrum. Robinson and Hualde (2003) and Hualde and Iacone (2019) consider a
similar model but with Zt replaced byXt, so no asymptotically homogenous transformation
is applied. On the other hand, they allow u0,t to be fractionally integrated with an order
lower than that of Xt. Our asymptotic F theory will not directly apply in such a DGP for
u0,t, and we leave the extension to future research.

Within the framework of Type II fractional processes, the limit distributions involve
Type II fractional Brownian motion defined as follows:

Wx(τ ; δ) =
1

Γ(δ)

∫ τ

0

(τ − s)δ−1dWx(s) with Wx(0; δ) = 0,

where Wx(·) is the standard dx-dimensional Brownian motion. Applying the invariance
principle for fractional processes, which is established, for example, in Wu and Shao (2006),
we have

X[Tτ ]

T δ0−1/2
⇒ Bx(τ ; δ0) := Ω1/2

xx Wx(τ ; δ0), (28)

where Bx(τ ; δ0) = (Bx,1(τ ; δ0), . . . , Bx,dx(τ ; δ0))
′ is a dx-dimensional fractional Brownian

motion. This, together with the continuous mapping theorem, implies that for

νi,T (δ0) := κi,0 (T )
dx∏
j=1

κi,j(T
δ0−1/2),

we have

1

νi,T (δ0)
Zi,[Tτ ] = Hi,0

(
[Tτ ]

T

)
·

(
dx∏
j=1

Hi,j

(
Xj,[Tτ ]

T δ0−1/2

))
+ op(1)

⇒ Hi,0(τ) ·

(
dx∏
j=1

Hi,j(Bx,j(τ ; δ0))

)
:= Hi(τ, Bx(τ ; δ0)),

which holds jointly for i ∈ {1, . . . , dz}. This indicates that our previous definition of DT

can be suitably modified to DT = diag((ν1,T (δ0), . . . , νdz ,T (δ0))
′) so that

D−1
T Z[Tτ ] ⇒ Z (τ) (29)
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holds, where Z (·) = [H1(·, Bx(·; δ0)), . . . , Hdz(·, Bx(·; δ0))]′ is a full-rank vector process.
Under the high-level conditions in (28) and (29), our TA-OLS framework can be natu-

rally extended as
VY,i = Vα,iα0 + V ′

Z,iβ0 + V ′
∆δ0x,iγ0 + V0·x,i, (30)

where the augmented term V∆δ0x,i is defined as

V∆δ0x,i =
1√
T

T∑
t=1

[
∆δ0Xt

]
ϕi

(
t

T

)
for i ∈ {1, . . . , K}.

Denote (β̃TAOLS, γ̃TAOLS) as the (infeasible) TA-OLS estimator from (30), assuming that
δ0 is known. Note that V∆δ0x with δ0 = 1 is equal to V∆x in the I(1) regressor case, and
(β̃TAOLS, γ̃TAOLS) is equal to the feasible estimator (β̂TAOLS, γ̂TAOLS) for the I(1) cointegrated
system in Section 3. Invoking summation by parts, the continuous mapping theorem, and
integration by parts, we can obtain

T−1/2D−1
T VZ ⇒ ξ, V∆δ0x ⇒ η, and V α

0·x ⇒ ν (31)

holds jointly, where η, ν, and ξ are the same as defined in Section 3, but the stochastic
process Z(·) in ξ is now defined using a functional of Bx(·; δ0). A careful inspection of
our proof for Theorem 2 indicates that the asymptotic F and t limit results for the TA-
OLS test statistics do not depend on the order of fractional integration δ0 ∈ (1/2,∞).
Therefore, the TA-OLS estimation and inference framework can be extended to a more
general fractionally integrated system as in (27).

For the practical implementation of the TA-OLS method, knowledge of the fractional
parameter δ0 is required to construct V∆δ0x. After obtaining a consistent estimator δ̂ of
δ0, we can implement the feasible TA-OLS, (β̂TAOLS, γ̂TAOLS), using V∆δ̂x in place of V∆δ0x

with

V∆δ̂x,i =
1√
T

T∑
t=1

[
∆δ̂Xt

]
ϕi

(
t

T

)
.

To establish the asymptotic equivalence between the feasible β̂TAOLS and its infeasible coun-
terpart β̃TAOLS, we impose the following conditions, which are analogous to Assumptions
3(i, ii) of Robinson and Hualde (2003).

Assumption 6 |δ̂−δ0| ≤ C for some C <∞, and δ̂−δ0 = Op(T
−ψ) for some ψ ∈ (0, 1/2).

The conditions in Assumption 6 are also imposed in Robinson and Hualde (2003) and
Hualde and Iacone (2019), which consider fractional cointegration with unknown integra-
tion orders. These conditions can be guaranteed if the parameter space for δ0 is compact,
which is commonly assumed when studying nonlinear estimators, such as the local Whittle
estimator.
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Theorem 3 Let Assumptions 1, 2(i, ii) for the cointegrated system in (25) and (27), and
Assumptions 3, 5, and 6 hold. Assume further that limT→∞ D̃TRD

−1
T = A is of full row

rank p. Then, under the fixed-K asymptotics where K is held fixed as T → ∞, we have the
following:

(i)
√
TDT (β̂TAOLS − β0) =

√
TDT (β̃TAOLS − β0) + op(1) so that

√
TDT (β̂TAOLS − β0) ⇒ Ω

1/2
00·x (ξ

′Qηξ)
−1
ξ′Qην,

where ν is independent of (ξ, η), and ν ∼ N(0, IK).
(ii) Under the null hypothesis of H0 : Rβ0 = r, we have that

F ∗(β̂TAOLS) :=
K − dz − dx

K
F (β̂TAOLS) ⇒ Fp,K−dz−dx ;

t∗(β̂TAOLS) :=

√
K − dz − dx

K
t(β̂TAOLS) ⇒ tK−dz−dx for p = 1.

The result in Theorem 3 parallels those in Theorem 2, showing that the TA-OLS esti-
mator, based on a T−ψ-consistent fractional parameter estimator, retains an asymptotically
mixed normal limit centered at the true parameter. Additionally, it shows that the scaled
Wald and t statistics are asymptotically F and t distributed. Therefore, our asymptotic F
and t testing theory holds for asymptotically homogenous cointegration regressions when
the underlying driving process is a nonstationary fractional process. This appears to be
the first time that the convenient F and t asymptotic theory is developed in this setting.

7 Conclusion

The paper develops the asymptotic F and t test theory for cointegrated regressions, where
each regressor is an asymptotically homogeneous transformation of an I(1) process. Unlike
the fixed-b framework of Vogelsang and Wagner (2024) which considers the cointegrated
polynomial regressions, the asymptotic theory developed here does not require the full-
design assumption. Our theory has been extended to accommodate cases where the re-
gressors are driven by nonstationary, fractionally integrated processes of order δ0 for any
δ0 ≥ 1/2, while the regression error is I(0).

Further extensions are possible. In the exogenous case, we only require that each of the
suitably standardized regressors converges to a continuous-time process (i.e., D−1

T Z[T ·] ⇒
Z (·) for someDT ) and the (scaled) partial sum of the error process converges to a Brownian
motion. In the endogenous case, we further require that the endogeneity can be eliminated
by a long-run projection. The asymptotic F and t theory holds as long as these general
requirements are met. Another interesting extension is to consider fractional cointegration
when the regressor error is also fractionally integrated but of a lower order than the pro-
cesses driving the regressors. This would involve employing a consistent estimator for the
integration order of the regression error and transforming the original regression into one
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with an I(0) regression error. This extension requires further technical development, which
we leave for future research.

8 Appendix of Proofs, Tables, and Figures

Proof of Theorem 1. We prove only the case for FT , as the proof for tT is similar. We
write

Ω̂00 =
1

K
û′0

(
ϕ̃1, . . . , ϕ̃K

)
(Φ̃′Φ̃)−1

(
ϕ̃1, . . . , ϕ̃K

)′
û0.

Noting the invariance property: ϕ̃
′
iû0 = ϕ̃

′
iQZu0 = ϕ̃

′
iu0 (since û0 = QZu0 and QZϕ̃i = ϕ̃i),

we have, under Assumptions 1–4(i):

1√
T
ϕ̃

′
iû0 =

1√
T
ϕ̃

′
iu0 ⇒ Ω

1/2
00

∫ 1

0

ϕ̃i (τ) dW0 (τ) , (32)

jointly over i ∈ {1, . . . , K}, where ϕ̃i (τ) is defined in (6). This can be proved directly

or using the fact that ϕ̃
′
iû0 = (QZϕi)

′û0 = (ϕi)
′QZ û0 = (ϕi)

′û0, showing that the above
result is identical to (5). Furthermore, by the continuous mapping theorem, the (i, j)-th
element of Φ̃′Φ̃/T satisfies

1

T
ϕ′
iQZϕj

=
1

T
ϕ′
iϕj −

1

T
ϕ′
iZ(Z

′Z)−1Z ′ϕj

⇒
∫ 1

0

ϕi (τ)ϕj (τ) dτ −
(∫ 1

0

ϕi (τ)Z (τ)′ dτ

)(∫ 1

0

Z (τ)Z (τ)′ dτ

)−1(∫ 1

0

ϕj (τ)Z (τ) dτ

)
=

∫ 1

0

ϕ̃i (τ) ϕ̃j (τ) dτ = SΦ̃(i, j),

where the convergence holds jointly for all pairs (i, j). This implies that

Φ̃′Φ̃

T
⇒ SΦ̃, (33)

where SΦ̃ is invertible almost surely under Assumption 4(ii). Let

ϕ̃
∗
(τ) :=

[
ϕ̃1 (τ) , · · · , ϕ̃K (τ)

]
S−1/2

Φ̃
,
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which is a (row) vector of functions. By construction,

∫ 1

0

ϕ̃
∗
(τ)′ ϕ̃

∗
(τ) dτ = S−1/2

Φ̃


∫ 1

0

ϕ̃i (τ) ϕ̃j(τ)dτ︸ ︷︷ ︸
=SΦ̃(i,j)


1≤i,j≤K

S−1/2

Φ̃
= IK . (34)

The joint weak convergence results in (32) and (33) lead to

1√
T

[
ϕ̃

′
1û0, . . . , ϕ̃

′
K û0

]
·
(
1

T
Φ̃′Φ̃

)−1/2

⇒ Ω
1/2
00

[∫ 1

0

ϕ̃1 (τ) dW0 (τ) , . . . ,

∫ 1

0

ϕ̃K (τ) dW0 (τ)

]
S−1/2

Φ̃

= Ω
1/2
00

[∫ 1

0

ϕ̃∗
1 (τ) dW0 (τ) , . . . ,

∫ 1

0

ϕ̃∗
K (τ) dW0 (τ)

]
.

By the continuous mapping theorem, we then have that

Ω̂00 =
1

K
û′0

(
ϕ̃1, . . . , ϕ̃K

)
(Φ̃′Φ̃)−1

(
ϕ̃1, . . . , ϕ̃K

)′
û0

⇒ 1

K
Ω00

K∑
i=1

(∫ 1

0

ϕ̃∗
i (τ) dW0 (τ)

)2

.

Combining the above asymptotic results, we have

FT ⇒

{∫ 1

0
Z∗ (τ) dW0 (τ)

}′ {∫ 1

0
Z∗ (τ)Z∗ (τ)′ dτ

}−1 {∫ 1

0
Z∗ (τ) dW0 (τ)

}
/p∑K

i=1

[∫ 1

0
ϕ̃∗
i (τ) dW0 (τ)

]2
/K

:=
ζ ′0ζ0/p∑K
i=1 ζ

2
i /K

, (35)

where

ζ0 =

{∫ 1

0

Z∗ (τ)Z∗ (τ)′ dτ

}−1/2 ∫ 1

0

Z∗ (τ) dW0 (τ) ,

and

ζ := (ζ1, ζ2, . . . , ζK)
′ =

∫ 1

0

ϕ̃
∗
(τ)′ dW0 (τ) .

Under Assumption 4(ii), ζ ∼ N(0, IK) and ζ0 ∼ N(0, Ip) conditional on Z (·) . Also, condi-
tional on Z (·) , ζ is independent of ζ0, as both are conditionally normal and their conditional
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covariance is zero, since
∫ 1

0
ϕ̃i (τ)Z

∗ (τ) dτ = 0 for all i ∈ {1, . . . , K} . Thus, conditional on
Z (·) ,

ζ ′0ζ0/p

ζ ′ζ/K
∼ Fp,K .

Given that the conditional distribution Fp,K does not depend on the conditioning variable

(i.e., Z (·)), ζ
′
0ζ0/p

ζ′ζ/K
∼ Fp,K unconditionally. Therefore, FT ⇒ Fp,K .

Proof of Theorem 2. Since the result in Part (i) has been derived in Section 3, we only
prove the results in Part (ii). To prove Part (ii), note that under the H0 : Rβ0 = r,

√
TD̃T

(
Rβ̂TAOLS − r

)
= (D̃TRD

−1
T )

√
TDT

[
β̂TAOLS − β0

]
⇒ AΩ

1/2
00·x (ξ

′Qηξ)
−1
ξ′Qην.

Noting that

Ω̂00·x =
1

K
∥QVZ ,V∆x

V α
0·x∥

2 =
1

K

∥∥∥(QV∆x
− PQV∆x

VZ

)
V α
0·x

∥∥∥2 ,
we have:

F (β̂TAOLS) ⇒
[
A (ξ′Qηξ)

−1 ξ′Qην
]′ [
A (ξ′Qηξ)

−1A′]−1 [
A (ξ′Qηξ)

−1 ξ′Qην
]
/p∥∥(Qη − PQηξ

)
ν
∥∥2 /K

=

∥∥∥[A (ξ′Qηξ)
−1A

]−1/2
A (ξ′Qηξ)

−1 ξ′Qην
∥∥∥2 /p∥∥(Qη − PQηξ

)
ν
∥∥2 /K ,

where [
A (ξ′Qηξ)

−1
A
]−1/2

A (ξ′Qηξ)
−1
ξ′Qην ∼ χ2

p,∥∥(Qη − PQηξ

)
ν
∥∥2 ∼ χ2

K−dz−dx .

Conditional on (ξ, η) , both
(
Qη − PQηξ

)
ν and ξ′Qην are normal and their conditional

covariance is

cov(
(
Qη − PQηξ

)
ν, ξ′Qην) =

(
Qη − PQηξ

)
Qηξ = Qηξ −Qηξ = 0.

Hence, the limiting distribution of F ∗(β̂TAOLS) equals that of a ratio of two independent
(scaled) chi-square random variables, namely χ2

p/p and χ2
K−dz−dx/ (K − dz − dx) , and is

therefore the Fp,K−dz−dx distribution. The case for p = 1 can be shown similarly, and the
details are omitted.

Proof of Theorem 3. We prove only Part (i) since the proof for Part (ii) is essentially the
same as that of Theorem 2, where the stochastic process Z(·) and (η, ξ) are now defined
as functionals of Bx(·; δ0). We first show that

V∆δ̂x,i − V∆δ0x,i =
1√
T

T∑
t=1

[
∆δ̂Xt −∆δ0Xt

]
ϕi

(
t

T

)
= op(1)
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for all i ∈ {1, 2, . . . , K} for a finite K. Using a0 (·) ≡ 1 and ux,0 = 0, we can write that, for

some δ̃ satisfying |δ̃ − δ0| ≤ |δ̂ − δ0|,

∆δ̂Xt −∆δ0Xt = ∆(δ̂−δ0)ux,t − ux,t

=
t∑

j=0

aj(δ̂ − δ0)ux,t−j − ux,t =
t−1∑
j=1

aj(δ̂ − δ0)ux,t−j

=
t−1∑
j=1

{
M−1∑
m=1

(δ̂ − δ0)
m

m!
a
(m)
j (0)ux,t−j +

(δ̂ − δ0)
M

M !
a
(M)
j (δ̃ − δ0)ux,t−j

}

=
M−1∑
m=1

(δ̂ − δ0)
m

m!
g(m)(ux,t, 0) +

(δ̂ − δ0)
M

M !
g(M)(ux,t, δ̃ − δ0), (36)

for any M ≥ 2, where

g(m)(ux,t, b) =
t−1∑
j=1

a
(m)
j (b)ux,t−j with a

(m)
j (b) =

dmaj (b)

dbm
.

Therefore, we have V∆δ̂x,i − V∆δ0x,i = AT +BT , where

AT =
M−1∑
m=1

(δ̂ − δ0)
m

m!
AmT , AmT :=

1√
T

T∑
t=1

t−1∑
j=1

a
(m)
j (0)ux,t−jϕi

(
t

T

)
,

BT =
(δ̂ − δ0)

M

M !

1√
T

T∑
t=1

g(M)(ux,t, δ̃ − δ0)ϕi

(
t

T

)
.

For notational simplicity, we have suppressed the dependence of AT , AmT , and BT on i,
the index for the basis functions.

To proceed, we note that δ̂ − δ0 = Op(T
−ψ) from Assumption 6. Then, we can apply

the result (C.13) of Lemma C.4 in Robinson and Hualde (2003) and obtain that

g(M)(ux,t, δ̃ − δ0) = Op(t
1/2),

which holds uniformly in t ∈ {1, . . . , T}. For a large enough M, it follows that

∥BT∥ = Op

(
T−ψM)× 1√

T

T∑
t=1

√
t

∣∣∣∣ϕi( t

T

)∣∣∣∣
= Op

(
T−ψM+1

)
× 1

T

T∑
t=1

√
t

T

∣∣∣∣ϕi( t

T

)∣∣∣∣
= Op

(
T−ψM+1

)(∫ 1

0

τ |ϕi (τ)| dτ + o(1)

)
= op (1) ,
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where the final equality follows from Assumption 5.
To prove that ∥AT∥ = op (1) for any M ≥ 2, we first establish a bound for AmT for any

m ∈ {1, . . .M − 1}. We consider the scalar case with dx = 1 only, as the vector case can
be reduced to the scalar case by considering AmT element by element. We have

AmT =
1√
T

T−1∑
s=1

T∑
t=s+1

a
(m)
t−s(0)ux,sϕi

(
t

T

)

=
1√
T

T−1∑
s=1

[
T−s∑
τ=1

a(m)
τ (0)ϕi

(
τ + s

T

)]
︸ ︷︷ ︸

:=hi,s

ux,s :=
1√
T

T−1∑
s=1

hi,sux,s.

Using the continuity and positivity of the spectral density fux (·) of ux,t, we can obtain that
for some positive constant Cf :

E
(
A2
mT

)
=

1

T

T−1∑
s1=1

T−1∑
s2=1

hi,s1hi,s2E[ux,s1ux,s2 ] =
1

T

T−1∑
s1=1

T−1∑
s2=1

hi,s1hi,s2

∫ π

−π
fux(λ)e

i(s1−s2)λdλ

=
1

T

∫ π

−π
f(λ)

∣∣∣∣∣
T−1∑
s=1

hi,se
isλ

∣∣∣∣∣
2

dλ

≤ Cf
T

∫ π

−π

∣∣∣∣∣
T−1∑
s=1

hi,se
isλ

∣∣∣∣∣
2

dλ = O

(
1

T

)
·
T−1∑
s=1

h2i,s.

Next, it follows from Lemma D.4 of Robinson and Hualde (2003) that

a(m)
τ (0) = 0 for τ < m;

|a(m)
τ (0)| ≤ Cm(log(τ + 1))m−1

τ −m+ 1
for τ ≥ m,

where Cm <∞ depends only on m. Using these results and Assumption 5, we obtain that,
for some positive constant C̃m depending only on m,

T−1∑
s=1

h2i,s =
T−1∑
s=1

[
T−s∑
τ=1

a(m)
τ (0)ϕi

(
τ + s

T

)]2

=
T−1∑
s=1

[
T−s∑
τ=m

a(m)
τ (0)ϕi

(
τ + s

T

)]2
≤ C̃m

T−1∑
s=1

[
T−s∑
τ=m

[log (τ + 1)]m−1

τ −m+ 1

]2

≤ C̃m
T−1∑
s=1

[log(T )]2m = O(T (log(T ))2m).
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It then follows that E[A2
mT ] = O([log(T )]2m), and consequently AmT = Op ([log(T )]

m) . As
a result, for any M ≥ 2 :

|AT | ≤
M−1∑
m=1

|δ̂ − δ0|m

m!
|AmT | = Op

(
T−ψ [log(T )]m

)
= op (1) .

We have therefore proved that∥∥∥V∆δ̂x,i − V∆δ0x,i

∥∥∥ ≤ ∥AT∥+ ∥BT∥ = op (1)

for all i ∈ {1, . . . , K}. This, together with (31) and Slutsky’s theorem, implies that

T−1/2D−1
T VZ ⇒ ξ, V∆δ̂x ⇒ η, and V α

0·x ⇒ ν

hold jointly. Part (i) then follows straightforwardly by the continuous mapping theorem
and Slutsky’s theorem.
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Table 1: Empirical Rejection Probabilities of the OLS-HAC-χ2 Test and OLS-HAR-F Test
in Exogenous Cointegrated Homogeneous Regression

T = 100
Case (i) Case (ii)

ρ OLS-HAC OLS-HAR OLS-HAC OLS-HAR
0.05 0.0873 0.0511 0.0769 0.0539
0.25 0.1189 0.0671 0.1036 0.0672
0.50 0.1866 0.0908 0.1482 0.0823
0.75 0.3236 0.1332 0.2371 0.1016
0.90 0.5386 0.2122 0.4214 0.1563

T = 200
Case (i) Case (ii)

ρ OLS-HAC OLS-HAR OLS-HAC OLS-HAR
0.05 0.0659 0.0473 0.0636 0.0473
0.25 0.0971 0.0611 0.0836 0.0645
0.50 0.1341 0.0711 0.1053 0.0598
0.75 0.2208 0.1015 0.1671 0.0824
0.90 0.4040 0.1105 0.2962 0.0932

Table 2: Empirical Rejection Probabilities of the Tests based on IM-OLS, TA-OLS, and
FM-OLS for Endogenous Cointegrated Homogeneous Regression

T = 100
Case (i) Case (ii)

ρ IM-OLS TA-OLS FM-OLS TA-OLS
0.05 0.0542 0.0532 0.0685 0.0520
0.25 0.0836 0.0629 0.0936 0.0648
0.50 0.1359 0.0591 0.1601 0.0567
0.75 0.2595 0.0617 0.3743 0.0591
0.90 0.3346 0.0781 0.7632 0.0841

T = 200
Case (i) Case (ii)

ρ IM-OLS TA-OLS FM-OLS TA-OLS
0.05 0.0537 0.0517 0.0532 0.0514
0.25 0.0763 0.0643 0.0745 0.0629
0.50 0.0958 0.0621 0.1007 0.0623
0.75 0.1702 0.0607 0.1912 0.0623
0.90 0.3236 0.0598 0.4966 0.0627
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Table 3: Country Codes and the Corresponding Country Names

Country Codes Country Names

AUS, AUT, BEL, CAN, DEN, Australia, Austria, Belgium, Canada, Denmark,
FIN, FRA, HOL, ITA, JAP, Finland, France, Netherlands, Italy, Japan,

NOR, UK, USA Norway, United Kingdom, United States of America

Table 4: Estimation Results for the Turning Points (= exp((−(β̂0,1/2β̂0,2))) of Carbon
Dioxide Emissions

Turning Points ($)
Country TA-OLS FM-OLS LS
AUS 25,925 26,680 28,257
AUT 23,885 26,553 30,855
BEL 11,863 11,784 12,181
CAN 19,223 20,508 21,497
DEN 16,216 16,276 15,980
FIN 17,556 17,935 18,163
FRA 11,893 11,781 12,105
HOL 17,698 18,424 17,746
ITA 22,150 21,624 22,221
JAP 19,198 19,442 20,872
NOR 32,345 34,567 38,378
UK 20,042 21,316 23,431
USA 21,333 21,552 21,934
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Figure 1: Plots of the logarithm of per capita CO2 against the logarithm of per capita
GDP for selected countries.
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Table 5: TA-OLS Coefficients with 95% Confidence Intervals

Country β̂0,1 95% CI for β0,1 β̂0,2 95% CI for β0,2
AUS 12.1629 [8.6629, 15.6629] -0.5985 [-0.7824, -0.4146]
AUT 5.8547 [1.9911, 9.7182] -0.2880 [-0.4967, -0.0793]
BEL 9.4405 [2.9312, 15.9497] -0.5026 [-0.8504, -0.1548]
CAN 12.9825 [5.7404, 20.2246] -0.6583 [-1.0381, -0.2785]
DEN 23.9747 [16.2082, 31.7412] -1.2367 [-1.6452, -0.8283]
FIN 20.2463 [13.1517, 27.3409] -1.0350 [-1.4181, -0.6518]
FRA 19.4696 [10.6470, 28.2922] -1.0377 [-1.5094, -0.5660]
HOL 16.6963 [9.3788, 24.0139] -0.8536 [-1.2409, -0.4663]
ITA 15.8374 [11.5176, 20.1573] -0.8007 [-1.0361, -0.5654]
JAP 5.9537 [3.3736, 8.5337] -0.2855 [-0.4289, -0.1421]
NOR 16.8327 [10.0928, 23.5725] -0.8491 [-1.2047, -0.4935]
UK 4.3306 [-0.2112, 8.8723] -0.2403 [-0.4800, -0.0006]
USA 11.3811 [3.8142, 18.9481] -0.5713 [-0.9580, -0.1847]

Table 6: FM-OLS Coefficients with 95% Confidence Intervals

Country β̂0,1 95% CI for β0,1 β̂0,2 95% CI for β0,2
AUS 11.8073 [8.9543, 14.6603] -0.6025 [-0.8043, -0.4006]
AUT 5.6466 [2.5744, 8.7188] -0.3192 [-0.5422, -0.0963]
BEL 9.5546 [4.4767, 14.6325] -0.5411 [-0.9078, -0.1744]
CAN 10.7404 [4.8068, 16.6740] -0.6826 [-1.0686, -0.2966]
DEN 23.2411 [17.7675, 28.7147] -1.2630 [-1.6820, -0.8441]
FIN 19.6522 [14.5893, 24.7151] -1.0525 [-1.4560, -0.6489]
FRA 18.6251 [10.7618, 26.4883] -1.0929 [-1.5849, -0.6009]
HOL 14.6872 [8.8261, 20.5482] -0.8866 [-1.2764, -0.4969]
ITA 6.9044 [4.9938, 8.8149] -0.3399 [-0.4643, -0.2156]
JAP 16.0276 [13.9593, 18.0958] -0.8370 [-1.0816, -0.5924]
NOR 5.7771 [3.6115, 7.9426] -0.2985 [-0.4438, -0.1533]
UK 15.1188 [9.6151, 20.6224] -0.8733 [-1.2395, -0.5071]
USA 10.2724 [6.2604, 14.2844] -0.5821 [-0.9734, -0.1909]
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Figure 2: TA-OLS estimates and LS estimates (based on Chan and Wang (2015)) and the
95% confidence intervals with K = 12 for the quadratic cointegrated model in (24)

38



AU
S

AU
T

BEL
C
AN

D
EN

FIN
FR

A
H
O
L

IR
E

IT
A

JA
P

N
O
R

U
SA

Country

0

5

10

15

20

25

30

35

AU
S

AU
T

BEL
C
AN

D
EN

FIN
FR

A
H
O
L

IR
E

IT
A

JA
P

N
O
R

U
SA

Country

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 3: TA-OLS estimates and FM-OLS estimates (based on Wagner and Hong (2016))
and the 95% confidence intervals with K = 12 for the quadratic cointegrated model in (24)
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Table 7: Chan and Wang (2015)’s LS Coefficients with 95% Confidence Intervals

Country β̂0,1 95% CI for β0,1 β̂0,2 95% CI for β0,2
AUS 11.5200 [10.8100, 12.2300] -0.5620 [-0.7300, -0.3940]
AUT 5.0755 [4.1930, 5.9580] -0.2455 [-0.3890, -0.1020]
BEL 9.1160 [7.9220, 10.3100] -0.4845 [-0.7210, -0.2480]
CAN 9.2175 [8.1140, 10.3210] -0.4620 [-0.7320, -0.1920]
DEN 23.7235 [22.2420, 25.2050] -1.2255 [-1.5860, -0.8650]
FIN 18.9670 [17.2250, 20.7090] -0.9670 [-1.2560, -0.6780]
FRA 16.4430 [15.0000, 17.8860] -0.8745 [-1.1900, -0.5590]
HOL 14.9205 [13.5790, 16.2620] -0.7625 [-1.0930, -0.4320]
ITA 6.8160 [6.0620, 7.5700] -0.3405 [-0.4430, -0.2380]
JAP 14.5015 [13.6470, 15.3560] -0.7290 [-0.8820, -0.5760]
NOR 5.4465 [4.6140, 6.2790] -0.2580 [-0.3650, -0.1510]
UK 11.8025 [10.5550, 13.0500] -0.5865 [-0.8220, -0.3510]
USA 9.5360 [8.4490, 10.6230] -0.4770 [-0.7680, -0.1860]
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